Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Polymerization-Induced Proteinosome Formation

Fang Liu, Yaqian Cai, Huan Wang, Xinlin Yang, and Hanying Zhao*

College of Chemistry and Key Laboratory of Functional Polymer Materials of the

Ministry of Education, Nankai University, Collaborative Innovation Center of

Chemical Science and Engineering (Tianjin), Tianjin 300071, China

CONTENTS

1.Experimental Part	S2
1.1 Materials	S2
1.2 Experimental procedures	
2.Characterization.	S4
3.Supplementary figures	S6
Figure S1	S6
Figure S2	S6
Figure S3	
Figure S4	S8

1.Experimental Part.

1.1 Materials.

N-isopropylacrylamide (NIPAM, 97%) was purchased from Sigma-Aldrich. It was recrystallized from n-hexane and dried under reduced pressure. Bovine Serum Albumin (BSA, Dingguo, 96%), ovalbumin (OVA, Sigma, 98%), 2,2'-azobis[2-(2imidazolin-2-yl)propane] dihydrochloride (VA-O44, Beijing Ocean Co. Ltd., 98%), 2,2'-dithiodipyridine (Heowns, 99%), fluorescein isothiocyanate (FITC, Alfa Aesar, 95%), 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB, Alfa Aesar, 99%) and sodium sulforhodamine B (Dalian Meilun Biological Technology Co. Ltd., 98%) were used as received. N,N-Dimethylformamide (DMF) was distilled under reduced pressure before use. Chain transfer agent (CTA), 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid, synthesized was in this laboratory.

1.2 Experimental procedures

Coupling of thiols on BSA.

Native BSA (600 mg, 9.0×10^{-6} mol) were dissolved in 60 mL of PBS (PH=8.0, 50 mM) in a 100 mL Schlenk flask, and 2,2'-dithiodipyridine (25.2 mg, 1.14×10^{-5} mol) dissolved in 1.5 mL of DMF was added dropwise to the protein solution. Thiol-disulfide exchange reaction between thiols on BSA and 2,2'-dithiodipyridine was conducted at 0 °C for 12 h. Low molecular weight compounds and organic solvents were removed after dialysis against PBS (PH=8.0, 50 mM) for one day in a dialysis tubing (MWCO = 7 WDa), and pyridyl disulfide coupled BSA was obtained.

Determination of thiol content of BSA by Ellman's method.

DTNB (4.7 mg, 1.2×10^{-5} mol) was dissolved in 2 mL of PBS (100 mM, PH=8.0), and 30 µL of the solution was added to 1 mL of BSA solution (10 mg, 4.2×10^{-7} mol). The mixture was vortexed for 30 minutes and subjected to UV-vis measurement.

Polymerization-induced formation of proteinosomes.

A typical procedure for the synthesis of PNIPAM/BSA proteinosomes was described as follows. BSA (7.5 mg, 1.1×10^{-7} mol) and NIPAM (12.5 mg, 1.1×10^{-4} mol) were dissolved in 4.75 mL of PBS (pH=7.0, 10 mM) in a 10 mL schlenk flask. RAFT CTA (0.0875 mg, 3.30×10^{-7} mol) dissolved in 0.125 mL of DMF was added to the above solution. After three pump-thaw cycles at 0 °C, VA-044 (0.5 mg, 1.5×10^{-6} mol) dissolved in 0.25 mL of PBS was added into the solution through a syringe. The RAFT polymerization was performed at 40 °C for 12 h. The polymerization was stopped by exposure of the solution to air.

The synthetic procedure for the synthesis of PNIPAM/OVA proteinosomes is similar to that of PNIPAM/BSA proteinosomes, where OVA (2.5 mg, 5.5×10^{-8} mol) instead of BSA was used.

Kinetics study of RAFT polymerization of NIPAM in the presence of BSA.

BSA (3.7 mg, 5.5×10^{-8} mol) and NIPAM (12.5 mg, 1.10×10^{-4} mol) were dissolved in 4.75 mL of PBS (pH=7.0, 10 mM) with deuterated water as solvent in a 10 mL Schlenk flask. RAFT CTA (0.0875 mg, 3.3×10^{-7} mol) dissolved in 0.125 mL of DMF and a trace amount of 1,3,5-trioxane used as internal standard were added to the protein solution. After three pump-thaw cycles at 0 °C, 0.25 mL PBS of VA-044 (0.5 mg, 1.55×10^{-6} mol) was added. Under an argon atmosphere, 1 mL of the above solution was transferred to a NMR tube and RAFT polymerization of NIPAM was performed on a NMR spectrometer at 40 °C. The ¹H NMR spectra were collected at every 10 mins.

Synthesis of FITC-Modified BSA

BSA (100 mg, 1.50×10^{-6} mol) was dissolved in 20 mL of PBS (pH=8.0, 50 mM), and 1 mL of FITC (1.0 mg, 2.5×10^{-6} mol) solution was added dropwise to the protein solution. The reaction was performed in an ice bath for 4 h in the dark. To remove the excess FITC, the solution was dialyzed against PBS (pH=8.0, 50 mM) for 2 days by using dialysis tubing (MWCO =7 WDa) in an ice bath in the dark. FITC-labeled BSA was obtained after freeze-drying.

2.Characterization.

Monomer conversions of NIPAM were determined on a Varian UNITY-plus 400 M nuclear magnetic resonance spectrometer at 40 °C. Thiol content of BSA was determined on a Shimadzu UV-2450 spectrometer by using a quartz cell of 1 cm path length. Z-average sizes $(D_{h,z})$ of proteinosomes were determined on a Malvern Zetasizer Nano-S90 equipped with a 10 mW He–Ne laser (633 nm) at an angle of 90°. Apparent number-average molecular weights of PNIPAM obtained at different monomer conversions were determined on two size exclusion chromatographs, one is equipped with a Hitachi L-2130 HPLC pump, three Shodex columns (5000–5K, 400–0.5K, and 5–0.15K), and a Hitachi L-2490 refractive index detector with DMF

as the mobile phase; the other equipped with a CoMetre 6000 LDI pump, Shodex SB-802.5, 803, and 804 HQ columns, and a Schambeck SFD GmbH RI2000 refractive index detector with PBS (pH=7.0, 10 mM) as the mobile phase. Lower critical solution temperatures (LCSTs) of PNIPAM at different monomer conversions were determined on a SETARAM micro-differential scanning calorimeter (µ-DSC) at a scanning rate of 0.3 K/min. Transmission Electron Microscopy (TEM) images of proteinosomes were collected on a Tecnai G2 F20 S-TWIN electron microscope operated at a voltage of 200 kV. The proteinosomes were stained with Pb(Ac)₂ and protein molecules were stained. The TEM specimens were prepared by depositing aqueous solutions of the stained proteinosomes on copper grids at 40 °C in an oven and water was evaporated at this temperature. Confocal Laser Scanning Microscopy (CLSM) images of the proteinosomes were collected on a Zeiss LSM710 confocal laser scanning microscope. Atomic force microscopy (AFM) images were recorded on a Nanoscope IV atomic force microscope (Digital Instruments Inc.) operated in the tapping mode using Si cantilevers with a scan rate of 1.0 Hz and a resonance frequency of 320 kHz. The AFM sample was prepared by depositing aqueous solution of the proteinosomes on the surface of mica at 40 °C in an oven and water was evaporated at this temperature. Far-UV circular dichroism (CD) spectra were collected on a Jasco J-715 spectropolarimeter at a scanning speed of 100 nm/min. Wavelength scans in the range of 190 to 250 nm were collected with a spectral resolution of 0.5 nm.

3.Supplementary Figures

Figure S1. Ellman's analysis of BSA after coupling with 2,2'-dipyridyl disulfide.

Figure S2. ¹H NMR spectrum of a polymerization system with PNIPAM, NIPAM

monomer and a trace of trioxane.

monomer conversions.

Figure S4. (a) UV-vis spectra of sodium sulforhodamine B (SRB) in PBS (pH=7.0,

10 mM) at different concentrations, (b) a standard curve of SRB in PBS.