Supporting Information

A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascades-enhanced photodynamic therapy

Shen-Zhen Ren^{a, b, †}, Xiao-Hua Zhu^{b, †}, Bin Wang^b, Ming Liu^b, Shu-Kai Li^b, Yu-Shun Yang^{b,*}, Hailong An^{a,*} and Hai-Liang Zhu^{b,*}

^a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China

^b State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China

[†]These two authors equally contributed to this paper.

* Corresponding authors. Tel. & fax: +86-25-89682572; E-mail: zhuhl@nju.edu.cn (H.L. Zhu); hailong an@hebut.edu.cn (H.L. An); milanargint@163.com (Y.S. Yang).

Statistical Analysis.

All the experiments were repeated at least in triplicate, and the results were presented as mean \pm standard deviation (SD). The statistical analysis was performed by using Origin 8.0 software. Statistical significance was determined using two-tailed Student's tests to compare between groups and P value <0.05 was considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.

Full name	Abbreviations			
ТСРР	Tetratopic tetrakis(4-carboxyphenyl) porphyrin			
DA	Dopamine			
PDA	Polydopamine			
UIO	UIO-66-NH ₂ @TCPP			
UIO@PDA	UIO-66-NH2@TCPP@PDA			
UIO@Ca	UIO-66-NH2@TCPP@CaO2@PDA			
UIO@Pt	UIO-66-NH2@TCPP@PDA@Pt			
UIO@Ca-Pt	UIO-66-NH2@TCPP@CaO2@PDA@Pt			

Table S1. List of abbreviations in this study

Fig. S1. UV–vis spectroscopy and standard curve of TCPP in DMF with different concentrations.

Fig. S2. TEM image of UIO@PDA NPs.

Fig. S3. ζ -potentials of UIO, UIO@PDA, UIO@Ca, UIO@Pt and UIO@Ca-Pt. All results were presented as mean \pm SD.

Fig. S4. TEM image of CaO₂ NPs.

Fig. S5. XRD patterns of CaO₂ NPs.

Fig. S6. TEM of UIO@Ca NPs.

Fig. S7. SEM of UIO@Ca-Pt NPs

Fig. S8. TEM images of UIO@ Pt and UIO@Ca-Pt.

Fig. S9. Electronic image of EDX of UIO@Ca-Pt.

Fig. S10. EDX spectrum of UIO@Ca-Pt.

Fig. S11. TEM images of UIO@Ca-Pt after incubating with water (A), PBS (B) or DMEM containing 10% FBS (C) for 3, 6, 12, 24 or 48 h.

Fig. S12. Colloidal characterization of UIO@Ca-Pt in water, PBS or DMEM containing 10% FBS for different time (A) and corresponding polydispersity index (B). All results were presented as mean \pm SD.

Fig. S13. A photo of hydrogen peroxide added to UIO@PDA, UIO@Pt, and UIO@Ca-Pt nanosolutions.

Fig. S14. Oxygen concentration changes of UIO@PDA, UIO@Pt, UIO@Ca and UIO@Ca-Pt solutions in the absence of H_2O_2 .

Fig. S15. Fluorescence images of cells treated using $[Ru(dpp)_3]Cl_2$ under different oxygen concentrations. Scale bars=50 μ m.

Fig. S16. Intracellular ${}^{1}O_{2}$ (detected with SOSG) detection of CT26 cells incubated with different samples for 4 h and then with (A) or without (B) laser irradiation.

Fig. S17. Cell viability of 293T cells treated with UIO@PDA, UIO@Pt and UIO@Ca-Pt NPs with different concentrations in the dark conditions for 48 h. All results were presented as mean \pm SD.

Fig. S18. Cell viability of CT26 cells treated with different samples for 4 h under hypoxia conditions and then with (A) or without (B) laser irradiation. All results were presented as mean \pm SD.

Fig. S19. Hemolysis percentages of UIO@Ca-Pt NPs at different concentrations. All results were presented as mean \pm SD.

Fig. S20. Ex vivo various organs and tumor images obtained 24 h after caudal vein injection of UIO@Ca-Pt NPs

Fig. S21 The digital photos obtained in pork muscle tissue

cm 1 2 3 4 5		8 9 1		2 13 14	4 15 cm
Control					8
UIO@PDA	S.			1	
UIO@PDA+laser	8	-	6	0	
UIO@Pt	9				
UIO@Pt+laser	8	0	-	4	
UIO@Ca-Pt		A		9	8
UIO@Ca-Pt+laser	0	•	0	0	•

Fig. S22. Relative tumor volume of each group treated with UIO@PDA, UIO@PDA+Laser, UIO@Pt, UIO@Pt +Laser, UIO@Ca-Pt, UIO@Ca-Pt +Laser NPs.

Fig. S23. Histological sections of major organs after treatment with PBS, UIO@PDA, UIO@PDA+Laser, UIO@Pt, UIO@Pt +Laser, UIO@Ca-Pt, UIO@Ca-Pt +Laser NPs for 12 days (× 100).