Supporting information

The application of amide unit in the construction of neutral functional dyes for mitochondrial staining

Wei Ma, ‡^a Bing Xu, ‡^b Ru Sun, ^a Yu-Jie Xu,*^b Jian-Feng Ge*,a,c

^a College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu 215123, China.

^b State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.

^c Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China

Index

1.Table	.5
Table S1 A summary of optical changes of dyes 2a-e in different solvents	.5
Table S2 A summary of optical changes of dyes 3a-e in different solvents	.6
2.Figures	.6
Fig. S1 Absorption spectra of 2a (a), 2b (b), 2c (c) 2d (d) and 2e (e) with the concentration of 10 μ M in different solvents.	: .6
Fig. S2 Absorption spectra of 3a (a), 3b (b), 3c (c) 3d (d)and 3e (e) with the concentration of 10 μM in different solvents.	: .7
Fig. S3 Emission spectra of 2b (a) and 3b (c) in different solvents, inset showed photographs of them under 36 nm irradiation in dark condition and their CIE chromaticity diagram; 2b was excited at 540 nm, slit widths: 1.5 nm/3 nm;3b was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.	5 .7
Fig. S4 Emission spectra of 2c (a) and 3c (c) in different solvents, inset showed photographs of them under 365 nm irradiation in dark condition and their CIE chromaticity diagram; 2c was excited at 540 nm, slit widths: 1.5 nm/3 nm; 3c was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.	; .7
Fig. S5 Emission spectra of 2d (a) and 3d (c) in different solvents, inset showed photographs of them under 36 nm irradiation in dark condition and their CIE chromaticity diagram; 2d was excited at 540 nm, slit widths: 1.5 nm/3 nm; 3d was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.	5 .7
Fig. S6 Emission spectra of 2e (a) and 3e (c) in different solvents, inset showed photographs of them under 36 nm irradiation in dark condition and their CIE chromaticity diagram; 2e was excited at 540 nm, slit widths: 1.5 nm/3 nm; 3e was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.	5 .8
Fig. S7 Percentages of cell viabilities of HeLa cells after treatment with dyes 3a-e for 6 hours	.8
Fig. S8 Confocal fluorescence images of HeLa cells with dye 2b . (a) Bright field images; (b) confocal image (red channel) of cells with dye 2b ($2 \mu M$); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.	I. .8
Fig. SQ Confectal fluorescence images of Help cells with due 2c (a) Pright field images: (b) confectal image (red	

Fig. S9 Confocal fluorescence images of HeLa cells with dye **2c**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2c** (2 μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM

(100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. S10 Confocal fluorescence images of HeLa cells with dye **2d**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2d** (2 μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. S11 Confocal fluorescence images of HeLa cells with dye **2e**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2e** (2 μM); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. 12 Confocal fluorescence image of HeLa cells with dye **3b**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3b** (2 μM); (c) confocal image (red channel) of cells with MitoTracker[®] Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel......10

Fig. S13 Confocal fluorescence image of HeLa cells with dye **3c**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3c** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker[®] Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel......11

Fig. S15 Confocal fluorescence image of HeLa cells with dye **3e**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3e** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker[®] Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel......11

Fig. S16 Confocal fluorescence image of HeLa cells with dye **3a**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3a** (10 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel......12

Fig. S17 Confocal fluorescence image of HeLa cells with dye **3a**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3a** (10 μ M); (c) confocal images (green channel) of cells with LysoTracker Green DND-26 (100 nM); (d) merged images of blue and green channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells;(f) fluorescence intensity correlation plot of blue channel and green channel. ..12

Fig. S19 Confocal fluorescence image of HeLa cells with dye **3b**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3b** (10 μ M); (c) confocal images (green channel) of cells with LysoTracker Green DND-

26 (100 nM); (d) merged images of blue and green channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells;(f) fluorescence intensity correlation plot of blue channel and green channel. ..13

Fig. S20 (a) Bright field images; (b-h) the images of dye 3a in HeLa cells after 30 minutes of continuo irradiation by the excitation light source (405 nm).	us 14
Fig. S21 ¹ H NMR spectrum of dye 2a.	15
Fig. S22 ¹³ C NMR spectrum of dye 2a.	15
Fig. S23 HRMS (ESI ⁺) spectrum of dye 2a	16
Fig. S24 ¹ H NMR spectrum of dye 2b	16
Fig. S25 ¹³ C NMR spectrum of dye 2b	17
Fig. S26 HRMS (ESI ⁺) spectrum of dye 2b.	17
Fig. S27 ¹ H NMR spectrum of dye 2c.	18
Fig. S28 ¹³ C NMR spectrum of dye 2c.	18
Fig. S29 HRMS (ESI ⁺) spectrum of dye 2c.	19
Fig. S30 ¹ H NMR spectrum of dye 2d	19
Fig. S31 ¹³ C NMR spectrum of dye 2d.	20
Fig. S32 HRMS (ESI ⁺) spectrum of dye 2d.	20
Fig. S33 ¹ H NMR spectrum of dye 2e.	21
Fig. S34 ¹³ C NMR spectrum of dye 2e.	21
Fig. S35 HRMS (ESI ⁺) spectrum of dye 2e	22
Fig. S36 ¹ H NMR spectrum of dye 3a.	22
Fig. S37 ¹³ C NMR spectrum of dye 3a.	23
Fig. S38 HRMS (ESI ⁺) spectrum of dye 3a	23
Fig. S39 ¹ H NMR spectrum of dye 3b	24
Fig. S40 ¹³ C NMR spectrum of dye 3b.	24
Fig. S41 HRMS (ESI ⁺) spectrum of dye 3b.	25
Fig. S42 ¹ H NMR spectrum of dye 3c.	25
Fig. S43 ¹³ C NMR spectrum of dye 3c.	26
Fig. S44 HRMS (ESI ⁺) spectrum of dye 3c.	26
Fig. S45 ¹ H NMR spectrum of dye 3d.	27
Fig. S46 ¹³ C NMR spectrum of dye 3d.	27
Fig. S47 HRMS (ESI ⁺) spectrum of dye 3d.	28
Fig. S48 ¹ H NMR spectrum of dye 3e	29
Fig. S49 ¹³ C NMR spectrum of dye 3e	29
Fig. S50 HRMS (ESI ⁺) spectrum of dye 3e	29
Fig. S51 Infrared spectra of dye 2a.	

ig. S52 Infrared spectra of dye 3a

1.TableTable S1 A summary of optical changes of dyes 2a-e in different solvents.

Dyes	Solvents	$\lambda_{\text{Abs, max}}$ a	$\lambda_{\text{Em, max}}$ a	Stokes shift ^a	ε ^b	Ф ^{с, d}
2a	H ₂ O	555	ND ^e	ND ^e	2.23	ND ^e
2a	DMSO	563	639	76	4.33	86
2a	MeOH	563	644	81	4.21	45
2a	CHCl ₃	554	604	50	4.32	94
2a	THF	540	604	64	4.12	96
2a	TOL	538	591	53	4.02	89
2b	H ₂ O	585	ND^e	ND^e	2.37	ND^e
2b	DMSO	564	630	66	6.07	75
2b	MeOH	563	635	72	5.70	63
2b	CHCl ₃	552	597	45	5.98	90
2b	THF	540	592	52	5.74	95
2b	TOL	536	589	53	4.78	93
2c	H₂O	596	ND^e	ND^e	4.99	ND^e
2c	DMSO	563	655	92	5.36	89
2c	MeOH	563	660	97	4.60	45
2c	CHCl₃	552	621	69	5.09	92
2c	THF	539	628	59	4.94	95
2c	TOL	535	618	83	2.96	93
2d	H₂O	573	ND^e	ND ^e	2.18	ND^e
2d	DMSO	561	640	79	3.15	83
2d	MeOH	560	657	97	3.10	27
2d	CHCl₃	551	607	56	3.31	87
2d	THF	538	601	63	3.24	96
2d	TOL	535	586	51	3.05	92
2e	H₂O	558	ND^e	ND ^e	2.32	ND^e
2e	DMSO	563	620	57	3.92	83
2e	MeOH	562	629	67	3.75	23
2e	CHCl₃	553	585	32	3.86	74
2e	THF	539	581	42	3.87	90
2e	TOL	535	583	48	3.72	81

^{*a*} Reported in nm. ^{*b*} Cresyl violet (Φ = 0.578 in ethanol) was used as the reference dye. ^{*c*} reported in 10⁴ M⁻¹ cm⁻¹. ^{*d*} not detectable. The water solutions contained 1% DMSO.

Table S2 A summary of optical changes of dyes 3a-e in different solvents.

Dyes	Solvents	$\lambda_{Abs, max}$ a	$\lambda_{\text{Em, max}}$ a	Stokes shift ^a	ε ^b	Ф ^{с, d}
3a	H ₂ O	398	489	91	2.04	38
3a	DMSO	386	482	96	3.16	80
3a	MeOH	388	471	83	3.28	89
3a	CHCl₃	388	457	69	3.22	65
3a	THF	379	469	90	3.34	68
3a	TOL	379	458	79	3.29	55
3b	H ₂ O	393	481	88	3.05	31
3b	DMSO	387	483	96	3.08	77
3b	MeOH	386	475	89	3.41	85
3b	CHCl₃	386	459	73	3.29	52
3b	THF	376	459	83	3.44	48
3b	TOL	379	460	81	3.36	65
3c	H ₂ O	391	479	88	2.94	50
3c	DMSO	385	472	87	3.47	78
3c	MeOH	386	469	83	3.61	93
3c	CHCl ₃	385	455	70	3.57	97
3c	THF	376	462	86	3.76	57
3c	TOL	378	456	78	3.49	55
3d	H ₂ O	390	482	92	1.78	55
3d	DMSO	383	475	92	3.15	71
3d	MeOH	384	470	86	3.29	65
3d	CHCl₃	380	457	77	3.49	54
3d	THF	374	459	85	3.51	48
3d	TOL	374	457	83	3.38	52
3e	H ₂ O	395	483	88	2.55	67
3e	DMSO	385	470	85	3.31	90
3e	MeOH	386	468	82	3.48	92
3e	CHCl₃	385	458	73	3.39	67
3e	THF	376	455	79	3.69	45
3e	TOL	375	459	84	3.21	46

^{*a*} Reported in nm. ^{*b*} Coumarin 153 (Φ = 0.546 in ethanol) was used as the reference dye. ^{*c*} reported in 10⁴ M⁻¹ cm⁻¹. ^{*d*} not detectable. The water solutions contained 1% DMSO.

2.Figures

Fig. S1 Absorption spectra of 2a (a), 2b (b), 2c (c) 2d (d) and 2e (e)with the concentration of 10 μ M in different solvents.

Fig. S2 Absorption spectra of 3a (a), 3b (b), 3c (c) 3d (d)and 3e (e) with the concentration of 10 μ M in different solvents.

Fig. S3 Emission spectra of **2b** (a) and **3b** (c) in different solvents, inset showed photographs of them under 365 nm irradiation in dark condition and their CIE chromaticity diagram; **2b** was excited at 540 nm, slit widths: 1.5 nm/3 nm;**3b** was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.

Fig. S4 Emission spectra of **2c** (a) and **3c** (c) in different solvents, inset showed photographs of them under 365 nm irradiation in dark condition and their CIE chromaticity diagram; **2c** was excited at 540 nm, slit widths: 1.5 nm/3 nm; **3c** was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.

Fig. S5 Emission spectra of **2d** (a) and **3d** (c) in different solvents, inset showed photographs of them under 365 nm irradiation in dark condition and their CIE chromaticity diagram; **2d** was excited at 540 nm, slit widths: 1.5 nm/3 nm; **3d** was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.

Fig. S6 Emission spectra of **2e** (a) and **3e** (c) in different solvents, inset showed photographs of them under 365 nm irradiation in dark condition and their CIE chromaticity diagram; **2e** was excited at 540 nm, slit widths: 1.5 nm/3 nm; **3e** was excited at 390 nm, slit widths: 1.5 nm/1.5 nm.

Fig. S7 Percentages of cell viabilities of HeLa cells after treatment with dyes 3a-e for 6 hours.

Fig. S8 Confocal fluorescence images of HeLa cells with dye **2b**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2b** (2μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. S9 Confocal fluorescence images of HeLa cells with dye **2c**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2c** (2 μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. S10 Confocal fluorescence images of HeLa cells with dye **2d**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2d** (2 μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. S11 Confocal fluorescence images of HeLa cells with dye **2e**. (a) Bright field images; (b) confocal image (red channel) of cells with dye **2e** (2 μ M); (c) confocal image (green channel) of cells with Mito-Tracker s Green FM (100 nM); (d) merged images of the green and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells; (f) fluorescence intensity correlation plot of the green channel and red channel.

Fig. 12 Confocal fluorescence image of HeLa cells with dye **3b**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3b** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

Fig. S13 Confocal fluorescence image of HeLa cells with dye **3c**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3c** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

Fig. S14 Confocal fluorescence image of HeLa cells with dye **3d**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3d** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

Fig. S15 Confocal fluorescence image of HeLa cells with dye **3e**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3e** (2 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

Fig. S16 Confocal fluorescence image of HeLa cells with dye **3a**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3a** (10 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

ROI length/µm

Fig. S17 Confocal fluorescence image of HeLa cells with dye **3a**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3a** (10 μ M); (c) confocal images (green channel) of cells with LysoTracker Green DND-26 (100 nM); (d) merged images of blue and green channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells;(f) fluorescence intensity correlation plot of blue channel and green channel.

Fig. S18 Confocal fluorescence image of HeLa cells with dye **3b**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3b** (10 μ M); (c) confocal image (red channel) of cells with MitoTracker® Red CMXRos (100 nM); (d) merged images of blue and red channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells, (f) fluorescence intensity correlation plot of blue channel and red channel.

Fig. S19 Confocal fluorescence image of HeLa cells with dye **3b**. (a) bright field images; (b) confocal image (blue channel) of cells with dye **3b** (10 μ M); (c) confocal images (green channel) of cells with LysoTracker Green DND-26 (100 nM); (d) merged images of blue and green channels; (e) fluorescence intensities of the regions of interest (ROIs) across the cells;(f) fluorescence intensity correlation plot of blue channel and green channel.

Fig. S20 (a) Bright field images; (b-h) the images of dye **3a** in HeLa cells after 30 minutes of continuous irradiation by the excitation light source (405 nm).

Fig. S26 HRMS (ESI⁺) spectrum of dye 2b.

Fig. S38 HRMS (ESI⁺) spectrum of dye 3a.

Fig. S44 HRMS (ESI⁺) spectrum of dye 3c.

Fig. S48 ¹H NMR spectrum of dye 3e.

Fig. S51 Infrared spectra of dye 2a.

