Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Biomass carbon dots derived from wedelia trilobata for the direct detection of glutathione and

their imaging application in living cells

Caizhen Liang^a, Xiaobao Xie*^a, Dandan Zhang^a, Jin Feng^a, Shunying Lu^a, Qingshan Shi*^a

^a Guangdong Provincial Key laboratory of Microbial Culture Collection and Application, State Key

Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology,

Guangdong Academy of Sciences, Guangzhou 510070, R.P.China

*Corresponding author

Email Address: xiexb@gdim.cn (Xiaobao Xie); shiqingshan@hotmail.com (Qingshan Shi).

Fig. S1. (A) XRD spectrum of wCDs; (B) Full-survey XPS of wCDs.

Fig. S2 The absorption spectra (A) and fluorescence spectra (B) of wCDs and Wedelia trilobata.

Fig. S3 (A) Fluorescence responses of wCDs toward various cations. $M^{n+} + Cu^{2+}$: the mixed solution containing all the ions mentioned in the image; (B) Fluorescence spectra of wCDs upon addition of Cu^{2+} at various concentrations (0–1000 μ M) in mimic physiological environment (PBS containing 1 mM Mg²⁺, 1 mM Ca²⁺, and 50 μ M of Mn²⁺, Zn²⁺, Fe²⁺). (C) The dependence of (F₀-F)/F₀ on the Cu²⁺ concentrations. Inset: linearity of response.

Fig. S4. Size distribution of the wCDs, wCDs- Cu^{2+} , wCDs- Cu^{2+} -GSH, and wCDs-GSH in PBS.

 Sample
 Size (d. nm)

 wCDs
 150.50

 wCDs-Cu²⁺
 495.93

 wCDs-Cu²⁺-GSH
 256.57

 wCDs-GSH
 545.77

2.5 B A wCDs wCDs-Cu²⁺ wCDs-Cu²⁺-GSH **Transmittance** (%) Absorbance (a.u.) 2.0 Cu²⁺ h 1.5 wCDs wCDs-Cu²⁺ wCDs-Cu²⁺ Cu²⁺ Absorbance (a.u.) d 0.1 1.0 0.5 Wavelength (nm) 0.0 300 3500 3000 2500 2000 1500 200 400 500 600 700 800 4000 1000 500 Wavelength (nm) Wavenumber (cm⁻¹)

Fig. S5. (A) UV-vis absorption spectra of wCDs, wCDs-Cu²⁺, wCDs-Cu²⁺-GSH and Cu²⁺ solutions
(Cu²⁺, GSH: 200 μM); (B) FTIR spectra of (a) wCDs, (b) wCDs-Cu²⁺, (c) wCDs-Cu²⁺-GSH, and
(d) wCDs-GSH.

Fig. S6. UV-vis absorption spectra before and after addition of GSH into the wCDs dispersion.

 Table S1 Hydrodynamic diameters of the wCDs, wCDs-Cu²⁺, wCDs-Cu²⁺-GSH, and wCDs-GSH dispersions

CDs-based probe	CDs precursors	Linear range (µM)	Incubation time	Detection modes	Ref.
CQDs/AuNPs	Citric acid, 2,2'-(Ethylene- dioxy)bis(ethylamine)	0.1–0.6	5 min	Turn off-on	1
C-dots-MnO ₂	Citric acid ethanediamine	1–10	3 min	Turn off-on	2
CNDs/AsO ₂ -	Trisodium citrate sodium thiosulphate	10–100	15 min	turn off;	3
CDs-Br	Citric acid DETA	0–34	30 min	Bromide- modification, Turn on	4
N,S-CDs/AuNPs	3-aminothiophenol	3.8-415.1	20 min	Turn off-on	5
CQDs/OPD/Cu ²⁺	Phenylenediamine Citric acid	30-80	> 3 h	Turn off-on	6
N-CDs/Ag ⁺	Neutral red Triethylamine	10–100	-	Sequential detection	7
B-CQDs/CC	Citric Acid, NaTPB, borax, boric acid	0.002–0.1	30 min	Turn off-on	8
BPMA- CQDs/Cu(II);	Carbon powder, H ₂ SO ₄ , HNO ₃	0.14–13.3;	16 min	Turn off-on;	9
BPMA- CQDs/Ag(I)	· -	0.20-23.3	14 min	Turn off-on	
wCDs	Wedelia trilobata	100–3000	20 s	Turn off-on and direct detection	This work

Table S2 Comparison of sensing performance of different CDs-based fluorescence probes for GSH

detection

Fig. S7. Cytotoxicity assessment of wCDs with L929, HeLa and HepG-2 cells (mean $\% \pm$ SD, n=4).

Fig. S8. Confocal fluorescence images of (a) L929, (b) HeLa, and (c) HepG2 cells incubated with 150 μ g/mL wCDs for 4 h. λ_{ex} = 405 nm, λ_{em} = 450–700 nm. Scale bar: 20 μ m.

Fig. S9. Confocal fluorescence images of (a) L929, (b) HeLa, and (c) HepG2 cells incubated with 250 μ g/mL wCDs for 4 h followed by incubation with 5 mM exogenous GSH during various periods. The fluorescence changes of these cells were monitored directly after the addition of GSH. $\lambda_{ex} = 405$ nm, $\lambda_{em} = 450-700$ nm. Scale bar: 20 μ m.

- Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M.-J. Li, C. Yi and M. Yang, *Biosens. Bioelectron.*, 2014, 56, 39-45.
- Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li and L.-B. Qu, *Biosens. Bioelectron.*, 2015, 72, 31-36.
- 3. A. Gupta, N. C. Verma, S. Khan and C. K. Nandi, *Biosens. Bioelectron.*, 2016, **81**, 465-472.
- F. Yan, Q. Ye, J. Xu, J. He, L. Chen and X. Zhou, Sens. Actuators B Chem., 2017, 251, 753-762.
- 5. W. Dong, R. Wang, X. Gong and C. Dong, Anal. Bioanal. Chem., 2019, 411, 6687-6695.
- Z. Han, D. Nan, H. Yang, Q. Sun, S. Pan, H. Liu and X. Hu, Sens. Actuators B Chem., 2019, 298, 126842.
- Y. Jiao, Y. Gao, Y. Meng, W. Lu, Y. Liu, H. Han, S. Shuang, L. Li and C. Dong, *ACS Appl. Mater. Interfaces*, 2019, **11**, 16822-16829.
- Y. Ma, A. Y. Chen, Y. Y. Huang, X. He, X. F. Xie, B. He, J. H. Yang and X. Y. Wang, *Carbon*, 2020, 162, 234-244.
- Y. Huang, J. Zhou, H. Feng, J. Zheng, H. M. Ma, W. Liu, C. Tang, H. Ao, M. Zhao and Z. Qian, *Biosens. Bioelectron.*, 2016, 86, 748-755.