Supporting Information

8 Pages
11 Figures
2 Tables

1 video

Shape Memory Polymer (SMP) Scaffolds with

Improved Self-Fitting Properties

Michaela R. Pfau, ${ }^{I}$ Kelly G. McKinzey, ${ }^{I}$ Abigail A. Roth, ${ }^{l}$ Lance M. Graul, ${ }^{1}$ Duncan J.
Maitland, ${ }^{1}$ Melissa A. Grunlan ${ }^{1,2,3 *}$
${ }^{1}$ Department of Biomedical Engineering, Texas A\&M University, College Station, Texas 77843, United States.
${ }^{2}$ Department of Materials Science and Engineering, Texas A\&M University, College Station,
Texas 77843, United States.
${ }^{3}$ Department of Chemistry, Texas A\&M University, College Station, Texas 77843, United States.
a)

b) Linear-PLLA-diol

c)

C)				NSC
	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	$\left.{ }^{\circ} \mathrm{C}\right)$	$\%$ Crystallinity	$\mathrm{M}_{\mathrm{n}}(\mathrm{kg} / \mathrm{mol})$
	45.1 ± 0.90	155 ± 0.36	49.8 ± 0.56	15.6
Linear-PLLA-diol	49.2 ± 0.54	152 ± 0.47	15.0 ± 1.9	14.7
Star-PLLA-tetrol	49.2			

Figure S1. (a) Synthetic scheme for linear- and star-PLLA. (b) NMR spectra with red boxes to indicate the reference peaks representing the terminal CH used to calculate M_{n}. (c) Summary of thermal properties from DSC and M_{n} from NMR.
a)
Monomer \quad Initiator
b) Linear-PCL-diol

c)

	DSC			NMR
	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$	$\%$ Crystallinity	$\mathrm{M}_{\mathrm{n}}(\mathrm{kg} / \mathrm{mol})$
Linear-PCL-diol	-65.1 ± 0.82	52.7 ± 0.16	47.7 ± 1.3	10.3
Star-PCL-tetrol	-63.2 ± 1.2	50.0 ± 0.37	44.8 ± 1.6	10.9

Figure S2. (a) Synthetic scheme for star-PCL-tetrol. [Note: linear-PCL-diol was purchased.] (b) NMR spectra with red boxes to indicate the reference peaks representing terminal CH_{2} used to calculate M_{n}. (c) Summary of thermal properties from DSC and M_{n} from NMR.
a)

b)

c)

	NMR
	\% acrylation
Linear-PCL-DA	93.4
Star-PCL-TA	87.4

Figures S3. (a) Synthetic scheme for acrylation of linear-PCL-diol and star-PCL-tetrol. NMR spectra for (b) linear-PCL-DA and (c) star-PCL-TA. (d) Summary of NMR \% acrylation calculations.

Figure S4. Sol content values of scaffolds demonstrating adequate cross-linking with an upper limit of $\sim 29 \%$ mass loss [$\sim 2-4 \%$ for $L P C L$ and $S P C L$ controls $+\sim 25 \%$ thermoplastic PLLA] for semiIPN compositions.

Figure S5. TGA of scaffolds verifying ~25\% thermoplastic in PCL/PLLA semi-IPNs (a) for linear-PCL-DA based compositions, and (b) for star-PCL-TA based compositions.

Figure S6. (a) Pore size was maintained at $\sim 220 \mu \mathrm{~m}$ for all scaffolds, and (b) all scaffolds exhibited similar $\sim 60 \%$ porosity (${ }^{\#} p>0.05$).

Table S1. Thermal properties of scaffolds.

	PCL			PLLA		
	Tm onset $\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{T m}_{\mathbf{m}} \mathbf{m i d p o i n t}$ $\left({ }^{\circ} \mathbf{C}\right)$	\% Crystallinity	Tm onset $\left({ }^{\circ} \mathbf{C}\right)$	Tm midpoint $\left({ }^{\circ} \mathbf{C}\right)$	\% Crystallinity
$\boldsymbol{L P C L}$	50.5 ± 0.41	56.1 ± 0.56	42.7 ± 1.7	--	--	--
$\boldsymbol{L} / \boldsymbol{L}$	50.5 ± 0.61	56.6 ± 0.21	42.0 ± 1.9	153.9 ± 1.8	164.0 ± 1.5	37.6 ± 7.3
$\boldsymbol{L} / \boldsymbol{S}$	51.1 ± 0.27	56.3 ± 0.25	42.5 ± 2.0	152.2 ± 0.84	157.5 ± 0.44	19.5 ± 1.8
$\boldsymbol{S P C L}$	42.6 ± 0.20	49.2 ± 0.02	30.4 ± 3.5	--	--	--
$\boldsymbol{S} / \boldsymbol{L}$	41.0 ± 0.83	50.0 ± 0.12	33.5 ± 1.6	155.2 ± 0.56	160.0 ± 0.19	23.0 ± 7.1
$\boldsymbol{S} / \boldsymbol{S}$	39.7 ± 2.0	50.3 ± 0.20	39.2 ± 4.3	147.9 ± 2.2	156.5 ± 0.13	24.7 ± 5.8

Figure S7. Scaffold (a) PCL \% crystallinity; ${ }^{*} p<0.05$ and ${ }^{\#} p>0.05$ versus $L P C L$ and (b) PLLA \% crystallinity; ${ }^{*} p<0.05$ and ${ }^{\#} p>0.05$ versus $\boldsymbol{L} / \boldsymbol{L}$.

Figure S8. SEM images of solid film cross-sections of analogous compositions to scaffolds to examine relative miscibility or phase separation. Scale bars $=50 \mu \mathrm{~m}$.

Table S2. Mechanical properties of scaffolds.

	Modulus (MPa)	Compressive Strength (MPa)	Toughness (mJ)
$\boldsymbol{L P P C L}$	9.65 ± 2.8	21.6 ± 4.0	238 ± 74
$\boldsymbol{L} / \boldsymbol{L}$	23.8 ± 3.6	28.0 ± 5.2	275 ± 66
$\boldsymbol{L} / \boldsymbol{S}$	17.4 ± 4.2	34.3 ± 6.0	325 ± 61
SPCL	3.57 ± 0.58	15.0 ± 3.2	115 ± 25
S/L	11.9 ± 2.3	24.5 ± 7.7	184 ± 45
S/S	11.3 ± 2.4	15.3 ± 6.8	138 ± 58

Figure S9. Quantitative shape fixity $\left(\mathrm{R}_{\mathrm{f}}\right)$ and shape recovery $\left(\mathrm{R}_{\mathrm{r}}\right)$ over 2 cycles; ${ }^{\#} p>0.05$.

Figure S10. The scaled-up, "larger", scaffolds ("lrg.") compared to "regular" scaffolds ("reg.") having: (a) 2 X the diameter, (b) 5X the volume, and (c) constant density (${ }^{*} p<0.01$, \# $p>0.05$ versus reg).
|| L / L

Slice 3

Element	Wt. \%
C	50.6 ± 2.0
O	31.0 ± 1.8
Au	18.4 ± 2.2

Element	Wt \%
C	49.3 ± 2.2
O	33.8 ± 2.1
Au	17.0 ± 2.5

Element	$\mathbf{W t .}$ \%
C	48.1 ± 2.1
O	32.6 ± 1.9
Au	19.3 ± 2.4

Element	Wt. \%
C	49.3 ± 2.1
O	31.3 ± 1.9
Au	19.5 ± 2.4

Figure S11. "Larger" scaffold slices were subjected to SEM EDS elemental mapping to confirm full porogen (NaCl) leaching. As shown, Na and Cl were both not detected, indicating that scaffolds were free from residual porogens.

Video S1. Diffusion of $\boldsymbol{L} / \boldsymbol{L}$ and $\boldsymbol{S} / \boldsymbol{S}$ semi-IPN macromer solutions through salt templates.

