Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A Facile Strategy for Preparing Porous Cu₂O Nanosphere and Application as Nanozymes in Colorimetric Biosensing

Ying Zhu Zhilu Zhang Xinyu Song * Yuxiang Bu

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Peoples' Republic of China

Fig. S1. (a) size distribution of Cu₂O NPs. (b) TEM image of Cu₂O NPs.

^{*} E-mail: songxy@sdu.edu.cn

Fig. S2. (a) HR-TEM image of the Cu₂O NPs showing the interplanar spacing.(b) SAED patternd of Cu₂O NPs.

Fig. S3. XRD of Cu₂O NPs of different molar ratio of CuCl₂:MgCl₂: (a) sole CuCl₂.(b) 20:1, (c) 10:1, (d) 5:1.

Fig. S4. BET analysis of Cu₂O of prepared with different molar ratio of CuCl₂:MgCl₂ (inset: pore size distribution (BJH-method)): (a) sole CuCl₂, (b) 20:1, (c) 10:1, (d) 5:1

Fig. S5. TEM image of the Cu-precursors without adding MgCl₂

Fig. S6. TEM images of the formation process of Cu₂O-(10:1-Mg): (a) 5 min,(b) 10 min, (c) 20 min, (d) 40 min.

Fig. S7. TEM images of the formation process of Cu₂O-(sole CuCl₂): (a) 5 min,(b) 10 min, (c) 20 min, (d) 40 min.

Fig. S8. The magnified TEM image (a) Cu₂O-(10:1-Mg) NPs,

(b) Cu₂O-(sole CuCl₂) NPs

Fig. S9. XRD of the formation process of Cu₂O-(10:1-Mg): (a) 5 min, (b) 10 min, (c) 20 min, (d) 40 min.

In the sample preparation for ICP analysis, the cuprous oxide was accurately weighed, dissolved in 1ml deionized water and diluted 10000 times. Finally, the analysis solution obtained before adding 2% up-HNO₃.

Sample Mg Concentration(ppm)		Wt%
5 min	11.143	1.1%
40 min	0.046	0.005%

Table S1. Mass content of Mg in the Cu₂O-(10:1-Mg) determined by ICP-MS

Table S2. pH value during the reduction reaction process

Time	pH
0	7.43
5	6.97
10	6.44
20	6.20
30	6.16
40	6.13
60	6.13

Table S3. Zeta potential of the various Cu₂O samples

Samples	Zeta potential
Cu ₂ O-(sole CuCl ₂)	-12.4 mV
Cu ₂ O-(20:1-Mg)	-14.5 mV
Cu ₂ O-(10:1-Mg)	-17.6 mV
Cu ₂ O-(5:1-Mg)	-18.1 mV

Fig. S10. FT-IR spectroscopy of the synthesized NPs of different molar ratio of CuCl₂:MgCl₂: (a) sole CuCl₂, (b) 20:1, (c) 10:1, (d) 5:1.

Catalyst	Substrate	$K_{\rm m}$ (mM)	$V_{\rm m} ({ m M}{ m S}^{-1})$	Ref.
	TMB	0.434	10.0×10^{-8}	[1]
нкр	H_2O_2	3.70	8.71×10^{-8}	
	TMB	1.775	4.09×10^{-8}	[2]
DNA/CuAI-LDH	H_2O_2	10.24	2.3×10 ⁻⁸	
	TMB	0.23	$8.78 imes10^{-8}$	[3]
CePO ₄ -CeO ₂	H_2O_2	4.76	29.79×10^{-8}	
Brominated	TMB	0.83	$0.68 imes 10^{-8}$	[4]
Graphene	H_2O_2	10.98	$3.60 imes 10^{-8}$	
	TMB	0.165	2.4×10^{-8}	[5]
$VO_2(A)$ nanoplates	H_2O_2	0.058	1.4×10^{-8}	
T'O @C O	TMB	0.28	0.65×10^{-8}	[6]
110_2 @CeO _x	H_2O_2	6.29	3.4×10^{-8}	
	TMB	0.256	7.58×10^{-9}	This work
Cu ₂ O-(sole CuCl ₂)	H_2O_2	0.860	1.81×10^{-8}	
$C = O \left(\frac{10}{10} \right) $	TMB	0.128	1.11×10^{-8}	This work
Cu ₂ O-(10:1-Mg)	H_2O_2	0.729	2.68×10^{-8}	

 Table S4. Comparison of the Michaelis–Menten Constant and Maximal Velocity of different nanomaterials.

References

- S. Jain, B. Sharma, N. Thakur, S. Mishra and T. K. Sarma, ACS Appl. Nano Mater., 2020, 3, 8, 7917–7929.
- [2] L. Chen, K. Sun, P. Li, X. Fan, J. Sun and S. Ai, *Nanoscale*, 2013, 5, 10982-10988.
- [3] G. Vinothkumar, A. I. Lalitha and K. Suresh Babu, *Inorg. Chem.*, 2019, 58, 349-358.
- [4] S. Singh, K. Mitra, R. Singh, A. Kumari, S. K. Sen Gupta, N. Misra, P. Maiti and B. Ray, Anal. Methods, 2017, 9, 6675-6681.
- [5] L. Zhang, F. Xia, Z. Song, N. Webster, H. Luo and Y. Gao, *RSC Adv.*, 2015, 5, 61371-61379.
- [6] L. Artiglia, S. Agnoli, M. Paganini, M. Cattelan and G. Granozzi, ACS Appl. Mater. Inter., 2014, 6, 20130-20136.
- [7] C. Chen, Y. Wang and D. Zhang, *Microchim. Acta*, 2019, **186**, 784.
- [8] M. Singh, P. Weerathunge, P. D. Liyanage, E. Mayes, R. Ramanathan and V. Bansal, *Langmuir*, 2017, 33, 10006-10015.
- [9] Y. Chen, T. Chen, X. Wu and G. Yang, Sensor Actuat. B: Chem., 2019, 279, 374-384.
- [10] C. Jiang, X. Wei, S. Bao, H. Tu and W. Wang, *RSC Adv.*, 2019, **9**, 41561-41568.

ESR spectrum. Specifically, 100 μ L of Cu₂O NPs with different concentrations, 100 μ L of 20 mM DMPO and 100 μ L of 5 mM H₂O₂ were added into a plastic tube, and then the prepared sample solution was transferred to a quartz capillary tube and placed in the ESR cavity. The mixture was quickly measured by recording the ESR spectrum.

Fig. S11. (a) Fluorescence spectrum of (a) TA + H₂O₂, (b) TA + Cu₂O-(10:1-Mg),
(c) TA + Cu₂O-(10:1-Mg) + H₂O₂. (b) ESR spectra of the DMPO/·OH spin adduct at different concentrations of Cu₂O NPs.

Fig. S12. The dependency of the absorbance at 652 nm on the concentrations of xanthine (a) and uric acid (b).

Samples	Found value (mM)	Added (mM)	Found value (mM)	Recovery (%)	RSD (%)	Hospital method(mM)
1	5.74	0.2	5.82	98.0	1.2	5.67
2	5.59	0.4	6.08	101.5	2.0	5.52
3	5.88	1.0	6.80	98.9	0.9	5.90

Table S5. Detection of the glucose standard added to human serum samples

Real sample analysis. For real sample analysis, glucose content in human serum samples was detected with the same methodology. The serum samples from healthy adults collected from the local hospital were first centrifuged at 12000 rpm, and then the supernatants were diluted by 10 folds. The detection procedure was the same as that of glucose in the buffer solution mentioned above, and the results were compared with those obtained by BS-380 automatic biochemical analyzer used in hospitals.

Table S6. Comparison of various nanomaterials employed for the detection of

L-cysteine.			
Material	LOD (µM)	Linear range (µM)	Refs.
VS ₄	0.97	0-100	[7]
Gd(OH)3 nanorods	2.6	0.2–75	[8]
CuMnO ₂ nanoflakes	11.26	25-300	[9]
R-Cu@Au/Pt NPs	4.0	0–400	[10]
Cu ₂ O-(10:1-Mg)	0.81	0-10	This work

Fig. S13. Selectivity analysis for L-cysteine detection in the presence of other thiolcontaining molecules, the black bars and red bars represent the system in the presence and absence of L-cysteine, respectively. (1) Met, (2) cystine, (3) cystamine, (4) homocysteine.

	5	1		5
Samples	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	4	4.12	103	2.3
2	6	5.87	97.8	1.4
3	8	7.79	97.4	1.6

Table S7 Analysis of real samples with different concentrations of L-cysteine

The serum samples filtrates were spiked with standard L-cysteine solutions at certain concentrations, and added into the mixture composed by the Cu₂O NPs+TMB+H₂O₂. After that, L-cysteine was detected using a UV-vis spectrophotometer as mentioned above.