Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information for:

Synthesis and antifouling performance of tadpole-shaped

poly(*N*-hydroxyethylacrylamide) coatings

Yanping Cao, Shengjie Liu, Zhaoqiang Wu* and Hong Chen

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou

215123, P. R. China

E-mail: wzqwhu@suda.edu.cn (Z. Wu)

Scheme S1. Synthesis of Y-TFP.

Figure S1. ¹H NMR spectrum of BPDL-CTA in CD₃OD.

Figure S2. ¹H NMR spectrum of Y-TFP in CDCl₃.

Figure S3. ¹³C NMR spectrum of Y-TFP in CDCl₃.

Figure S4. ¹⁹F NMR spectrum of Y-TFP in CDCl₃.

Figure S5. FT-IR spectrum of Y-TFP.

Display Report D:\Data\zyw\stu-sam\20180116\XZM_GD7_01_8454.d 0919-MS-low-METHODS.m XZM Acquisition Data Operator Instrument

Acquisition Date 4/12/2019 3:25:27 PM

Operator bruker Instrument micrOTOF-Q III 8228888.20487

Analysis Info

Acquisition Farameter							
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.0 Bar		
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C		
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min		
Scan End	3000 m/z	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Waste		

Figure S6. Mass spectrum of Y-TFP.

Figure S7. ¹H NMR spectrum of PHEAA in CD₃OD.

Figure S8. FT-IR spectra of (*I*-PHEAA)-*b*-PDMA and the resultant (*c*-PHEAA)-*b*-PDMA. (a) Full FT-IR spectra; (b) Expanded FT-IR spectra.

polymer	<i>M</i> _{n,NMR} ^a (g/mol)	$M_{n,GPC}^{b}$ (g/mol)	Dispersity (<i>Ð</i>) ^b			
PHEAA	9600	3500	1.23			
(/-PHEAA)- <i>b</i> -PDMA	11500	5700	1.61			
(<i>c</i> -PHEAA)- <i>b</i> -PDMA	/	5400	1.47			

Table S1. Molecular characterizations of the synthesized polymers

^{*a*}The M_n was determined via ¹H NMR spectroscopy in CD₃OD. ^{*b*}The M_n and \mathcal{D} (M_w/M_n) were measured by GPC with PEG standards using H₂O as eluent.

	1 1		
Sample	Thickness[nm]	Water contact angle[°]	Surface roughness[nm]
Au	/	84 ± 2	4.14
Au-(<i>I</i> -PHEAA)- <i>b</i> -PDMA	9.4 ± 0.3	19 ± 2	4.39
Au-(<i>c</i> -PHEAA)- <i>b</i> -PDMA	2.1 ± 0.1	30 ± 2	3.82

Table S2. Surface characteristics of polymer-modified gold surfaces

AFM was used to measure the root-mean-square (RMS) surface roughness. For the dry thickness of coating determined by ellipsometry, all samples are tested at room temperature and the measurement angle is 70°. Each sample is tested at two different points, and the data is then analyzed by WVASE32TM data acquisition and analysis software.