Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Field Emission Behaviors of CsPbI₃ Nanobelts

Zhentao Du^{1,2}, Fulin Jiang^{1,*}, Jinju Zheng², Shanliang Chen², Fenngmei Gao², Jie Teng¹,

Dingfa Fu¹, Hui Zhang¹ and Weiyou Yang^{2,*}

¹College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's

Republic of China

² Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China

^{*} Corresponding authors. E-mails: fulin.jiang.88@hnu.edu.cn (F. Jiang) and <u>weiyouyang@tsinghua.org.cn (W. Yang)</u> Tel: +86-574-87080966, Fax: +86-574-87081221.

Fig. S1 Schematic diagram of the experimental setup used for measuring FE properties of $CsPbI_3$ nanobelts.

Fig. S2 Typical SEM image of the $CsPbI_3$ nanobelt emitter under a low magnification.

Fig. S3 The crystal structure of CsPbI₃ nanobelts.

Fig. S4 *F*-*N* plots of CsPbI₃ nanobelt emitters with *d* fixed at 600-1000 μ m with an interval of 100 μ m.

Field emitters	E_{to} (V/ μ m)	β	Ref.
ZnS nanobelts	3.47	2010	1
AlN nanorod arrays	4.7	1888.7	2
Aligned AlN nanorods	3.8	950	3
CdS nanobelts	3.7	1298	4
CdS nanowire arrays	11.5	602	5
GaN nanocolumns	2.6	9725	6
Aligned ZnO nanobelts	1.3	14000	7
WO ₃ nanowires	4.8	-	8
MoS ₂ nanoflowers	4.5	-	9
SnO ₂ nanowires	3.5	1225	10
β -Ga ₂ O ₃ nanopillars	30	200	11
β -Ga ₂ O ₃ nanobelts	5.37	2242	12
SiC nanowires/nanorods	3.33	-	13
B-doped SiC nanowires	0.68	5464	14
Si nanowires	7.3	424	15
CsPbI ₃ nanorods	4	-	— 16
CsPbI ₃ _rGO composite	2.5	11000	
CH ₃ NH ₃ PbI _{3-x} Cl _x film	5.56	3183	17
CH ₃ NH ₃ PbI ₃ nanorods	4.2	_	18
CsPbI ₃ nanobelts	2.62	3553	Our work

Table S1 Turn-on fields (E_{to}) and β of typical semiconductor emitters ever reported.

References

- 1 X. S. Fang, Y. Bando, G. Z. Shen, C. H. Ye, U. K. Gautam, P. M. F. J. Costa, C. Y. Zhi, C. C. Tang and D. Golberg, *Adv. Mater.*, 2007, **19**, 2593-2596.
- 2 Y. Tang, H. Cong, Z. Chen and H. Cheng, *Appl. Phys. Lett.*, 2005, **86**, 233104.
- 3 J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen and Z. L. Wang, Adv. Mater., 2006, 18, 650-654.
- 4 L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando and D. Golberg, *Adv. Mater.*, 2010, **22**, 3161-3165.
- 5 T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao and D. Golberg, ACS Nano, 2009, 3, 949-959.
- 6 Z. Chen, C. Cao, W. S. Li and C. Surya, *Cryst. Growth Des.*, 2009, 9, 792-796.
- W. Z. Wang, B. Q. Zeng, J. Yang, B. Poudel, J. Y. Huang, M. J. Naughton and Z. F. Ren, *Adv. Mater.*, 2006, 18, 3275-3278.
- 8 Y. Baek and K. Yong, J. Phys. Chem. C, 2007, 111, 1213-1218.
- 9 Y. B. Li, Y. Bando and D. Golberg, Appl. Phys. Lett., 2003, 82, 1962-1964.
- 10 X. Fang, J. Yan, L. Hu, H. Liu and P. S. Lee, Adv. Funct. Mater., 2012, 22, 1613-1622.
- A. Grillo, J. Barrat, Z. Galazka, M. Passacantando, F. Giubileo, L. Iemmo, G. Luongo, F. Urban, C.
 Dubourdieu and A. Di Bartolomeo, *Appl. Phys. Lett.*, 2019, **114**, 193101.
- 12 L.-C. Tien, C.-C. Tseng and C.-H. Ho, J. Electron. Mater., 2012, 41, 3056-3061.
- 13 S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, J. Zhou, X. G. Zheng, H. T. Xu, J. Chen and J. C. She, *Appl. Phys. Lett.*, 2006, **89**, 023118.
- 14 S. Chen, M. Shang, L. Wang, Z. Yang, F. Gao, J. Zheng and W. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 35178-35190.
- X. Fang, Y. Bando, C. Ye, G. Shen, U. K. Gautam, C. Tang and D. Golberg, *Chem. Commun.*, 2007, DOI: 10.1039/b701113j, 4093-4095.

- 16 T. Paul, S. Maiti, N. Besra, B. K. Chatterjee, B. K. Das, S. Thakur, S. Sarkar, N. S. Das and K. K. Chattopadhyay, ACS Applied Nano Materials, 2019, 2, 5942-5951.
- 17 T. Park, J. Lee, J. Lee, J. Yang, S. Ha, S. Moon, H. Choi and W. Yi, *J Nanosci Nanotechnol*, 2018, 18, 1327-1330.
- N. Besra, S. Pal, B. K. Das and K. K. Chattopadhyay, *Phys. Chem. Chem. Phys.*, 2017, 19, 26708-26717.