Supporting Information

S, N-Codoped oil-soluble fluorescent carbon dots for a high color-rendering WLED

Quan Wang^{1,#}, Yixun Gao^{1,#}, Boyang Wang², Yuanyuan Guo¹, Umar, Ahmad³, Yanqing Wang⁴, Yao Wang^{1,*}, Siyu Lu^{2,*}, Hao Li^{1,*} and Guofu Zhou¹

¹Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.

²Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

³Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices, Najran University, Najran 11001, Kingdom of Saudi Arabia.

⁴Varitronix (He Yuan) Display Technology Limited, He Yuan 517000, P. R. China.

[#] *These authors contributed equally to this work.*

* Corresponding Author: Yao Wang, Email: <u>wangyao@m.scnu.edu.cn</u>

Siyu Lu, Email: sylu2013@zzu.edu.cn

Hao Li, E-mail: <u>haoli@scnu.edu.cn</u>

Figure S1 PL emission spectra of the S, N-codoped oil-soluble carbon dots (S, N-OCDs) under different preparation conditions: different heating temperatures for the same reaction time of 10 hours (A), and different reaction time at the same heating temperature of 220 $^{\circ}$ C (B).

Figure S2 Raman spectrum of the S, N-OCDs

Figure S3 XPS survey spectrum (A) and O1s high-resolution XPS spectra of the S, N-

OCDs (B).

Table S1 Elemental analysis results of the S, N-OCDs.

Ele	ement	C	;	N	Н		0*		S
Conte	nt (wt%)	69.8	35	6.26	7.21		7.5		9.18
Notes:	The	content	of	oxygen	element	is	obtained	by	calculation.

		CDs					WLED		
Sample	Ex. WL	Em. WL	QY	Color converter	ССТ		CIE Color	Working Current/	Poforonco
	(nm)	(nm)	(%)		(K)		Coordinates	Operating Voltage	Reference
ZnO ODs	357	561	17	ZnO QDs / epoxy			(0.305, 0.362)	10 mA	[91]
	001	501	17	composites			(0.000, 0.002)		[01]
	350	545	13	ZnO QDs / Zn(MSA) ₂	6517	80	(0.31.0.36)		1601
	550	545	1.5	composites	0317	02	(0.31,0.30)		[02]
	125	575		CdS QDs / PMMA	4610	97.0	(0.252, 0.225)	5 m	[62]
	425	575		composites	4019	07.9	(0.333, 0.333)	JIIA	5 IIIA [55]
Mn–Cu co-				Mn–Cu codoped ZnS					
doped ZnS	365	596	62	NPs / PVA	4227		(0.28,0.43)	3.8 V	[S4]
NPs				composites					
CdSe@ZnS		555		CdSe@ZnS core-					
core-shell	452			shell NCs / PMMA	3228	82.4	(0.37,0.30)		[S5]
NCs		613		composites					
	400	EAE	21.00	S, N-CDs / epoxy	E200	00.4	(0.22.0.20)	20 m (4)	This work
3, N-UCDS	400	040	21.00	composites	0009	00.4	(0.33,0.30)	20 MA / 4 V	THIS WOLK

Notes: "QDs" is the abbreviation of quantum dots; "NPs" is the abbreviation of nanoparticles; "NCs" is the abbreviation of nanocrystals.

Solvent type	volume	The mass of S, N-OCDs		
acetone	1 mL	> 10 mg		
DMF	1 mL	> 10 mg		
ethyl alcohol	1 mL	~ 2 mg		
water	1 mL	< 0.1 mg		

Table S3 The oil-solubility of S, N-OCDs in different solvents

References

S1. J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong and M. Q. Zhang, Physical Chemistry Chemical

Physics, 2014, 16, 5480-5484.

- S2. S. Roy, S. Pramanik, S. Bhandari and A. Chattopadhyay, Langmuir, 2017, 33, 14627-14633.
- S3. F. Li, C. Nie, L. You, X. Jin, Q. Zhang, Y. Qin, F. Zhao, Y. Song, Z. Chen and Q. Li, Nanotechnology,

2018, 29, 205701.

- S4. P. Kumbhakar, S. Biswas, P. Pandey, C. S. Tiwary and P. Kumbhakar, Nanoscale, 2019, 11, 2017-2026.
- S5. S. Nizamoglu, G. Zengin and H. V. Demir, Appl. Phys. Lett., 2008, 92, 031102.