Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers

Chun-Chieh Wang and Chih-Yu Chang*

Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan

E-mail: cychang@gapps.ntust.edu.tw

Figure S1. The photograph of the fabricated TENG.

Figure S2. The V_{oc} output of TENG (2 cm x 2 cm): (a) without SAM modification; (b) with F_{13} SAM; (c) with F_{17} SAM; (d) with F_{21} SAM; (e) with F_{21} SAM and APTES SAM. (f) The V_{oc} output of TENG (5 cm x 5 cm) based on F_{21} SAM and APTES SAM modification.

Figure S3. The I_{sc} output of TENG (2 cm x 2 cm): (a) without SAM modification; (b) with F_{13} SAM; (c) with F_{17} SAM; (d) with F_{21} SAM; (e) with F_{21} SAM and APTES SAM. (f) The I_{sc} output of TENG (5 cm x 5 cm) based on F_{21} SAM and APTES SAM modification.

Figure S4. The V_{oc} output of TENG (2 cm x 2 cm) at different load resistances under an external pushing force of 20 N: (a) without SAM modification; (b) with F_{13} SAM; (c) with F_{17} SAM; (d) with F_{21} SAM; (e) with F_{21} SAM and APTES SAM.

Figure S5. Dependency of the V_{oc} output of TENG on the number of fluorine atoms of SAM molecules.

Figure S6. Schematic illustration of APTES SAM-modified AI layer.

Figure S7. The charge density of the TENG based on F_{21} SAM and APTES SAM modification (contact area = 2 cm x 2 cm or 5 cm x 5 cm).

Figure S8. The V_{oc} of the TENG (2 cm x 2 cm) under various frequencies from 0.5 to 25 Hz; the statistical data were collected from more than 5 samples.

Figure S9. The photograph of 353 LEDs that lit up simultaneously by the TENG (2 x 2 cm) based on F_{21} SAM and APTES SAM modification.

Figure S10. The V_{oc} output of the TENG based on F_{21} SAM and APTES SAM modification before and after immersion in water; the statistical data were collected from more than 5 samples.

	PDMS	F ₁₃ SAM	F ₁₇ SAM	F ₂₁ SAM
Surface Potential (V)	-0.1	-1.01	-1.1	-1.36

Table S1. Surface potential properties of PDMS layer with and without fluorinatedSAMs modification

Table S2. Surface potential properties of Al layer with and without APTES SAM modification.

	Al	APTES SAM
Surface Potential (V)	0.54	0.92

	<i>V</i> _{oc} (V)	<i>Ι</i> _{sc} (μΑ)
Ref 1	105	27
Ref 2	560	38
Ref 3	520	44
Ref 4	330	108
This work	873	78

Table S3. Comparison of the characteristics of SAM-modified TENG previously reported as well as the present work.

	Area (cm x cm)	V _{oc} (V)	<i>Ι</i> _{sc} (μΑ)
Ref 5	5 x 5	35	0.44
Ref 6	10 x 10	404	44
Ref 7	7 x 7	368	78
Ref 8	6 x 5	210	45
This work	5 x 5	1469	150

Table S4. Comparison of the characteristics of large-area TENG previously reported aswell as the present work.

Reference

- 1. G. Song, Y. Kim, S. Yu, M.-O. Kim, S.-H. Park, S. M. Cho, D. B. Velusamy, S. H. Cho, K. L. Kim and J. Kim, *Chem. Mater.*, 2015, **27**, 4749-4755.
- 2. S. Wang, Y. Zi, Y. S. Zhou, S. Li, F. Fan, L. Lin and Z. L. Wang, *J. Mater. Chem. A*, 2016, **4**, 3728-3734.
- 3. S.-H. Shin, Y. E. Bae, H. K. Moon, J. Kim, S.-H. Choi, Y. Kim, H. J. Yoon, M. H. Lee and J. Nah, *ACS Nano*, 2017, **11**, 6131-6138.
- 4. S.-H. Shin, Y. H. Kwon, Y.-H. Kim, J.-Y. Jung, M. H. Lee and J. Nah, *ACS Nano*, 2015, **9**, 4621-4627.
- 5. M. O. Kim, S. Pyo, G. Song, W. Kim, Y. Oh, C. Park, C. Park and J. Kim, *Adv. Mater. Technol.*, 2018, **3**, 1800048..
- 6. F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji, K. Dai, L. Mi, D. Zhang, C. Liu and C. Shen, *Nano Energy*, 2019, **65**, 104068.
- 7. S. Lee, W. Ko, Y. Oh, J. Lee, G. Baek, Y. Lee, J. Sohn, S. Cha, J. Kim and J. Park, *Nano Energy*, 2015, **12**, 410-418.
- T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang and M. Zhu, *Nano Energy*, 2015, 14, 226-235.