High selective carrier-type modulation of tungsten selenide

transistors by iodine vapor

Shuangqing Fan,*,1 Minghui Cao,1 Jing Liu,2 Jiajia Liu,*,3 Jie Su*,1

 ¹School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China
²State Key Laboratory of Precision Measurement Technology and Instruments, School of precision Instruments and Opto-electronics Engineering
²Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
³Shijiazhuang Enlio Sports Goods Co., LTD. Shijiazhuang 050000, China

*Corresponding author E-mail: <u>sqfan@qdu.edu.cn</u>; <u>ljjleopold@163.com</u>; jsu@qdu.edu.cn

Fig. S1 Transfer characteristics of five TMDCs (MoS_2 , $MoSe_2$, $MoTe_2$, WS_2 , and ReS_2) before and after 15 s I_2 vapor treatment.

Fig. S2 Initial current drop after doping is attributed to desorption of weakly physisorbed I_2 .

Fig. S3 Photocurrent of the WSe_2/ReS_2 heterojunction before and after 15 s I_2 vapor treatment.

Fig. S4 Band diagrams before I_2 -doping and after I_2 -doping. The responsivity increases after the p-doping of WSe₂, which can be understood by the change in built-in field and depletion width with the treatment by iodine. As shown in Fig.R3a and b, after iodine doping, WSe₂ is p-doped, leading to a quasi-Fermi level close to the valence band. This can result in a larger built-in field and depletion region, leading to more e \Box cient photo-carrier collection and photo-absorption on the larger photoactive area.