Electronic Supplementary Information

Enhancing P3HT/PCBM blend stability by thermal crosslinking using poly(3hexylthiophene)-*S,S*-dioxide

M. Milanovich^a, T. Sarkar^b, Y. Popowski^a, J. Z. Low^c, L. M. Campos^c, S. Kenig^a, G. L. Frey^b and E. Amir^{a+}

a. Shenkar College of Engineering, Design and Art, Faculty of Engineering and Design, Department of Polymers and Plastics Engineering, Ramat Gan 5252626, Israel.

b. Department of Materials Science & Engineering, Technion – Israel Institute of Technology, Haifa, Israel.

c. Department of Chemistry, Columbia University, New York, USA.

⁺ Correspondence to: E. Amir, Department of Polymers and Plastics Engineering, Shenkar College, Ramat Gan 5252626, Israel. E-mail: eamir@shenkar.ac.il

1. <u>X-Ray Photoelectron Spectroscopy (XPS)</u>

Low-resolution XPS analysis of P3HT-TDO shows significant presence of oxygen, in comparison with P3HT, due to oxidation of sulfur atoms.

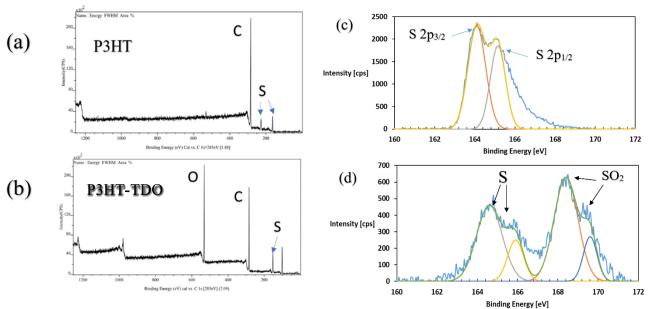


Figure S1 - (a) Low resolution XPS analysis of P3HT (b) Low resolution XPS analysis of P3HT-TDO (c) XPS analysis deconvolution of S 2p signal in P3HT (d) XPS analysis deconvolution of S 2p signal in P3HT-TDO.

Further XPS analysis was conducted in order to generate atomic compositions of SO₂/S, S/C, and SO₂/C for P3HT-TDO thin films, before and after annealing for 20 min at 150 °C.

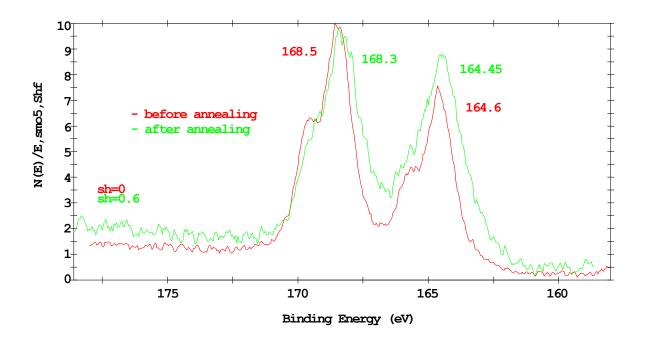


Figure S2 - Low resolution XPS analysis of P3HT-TDO S 2p signal before and after annealing for 20 min at 150 $^\circ\text{C}.$

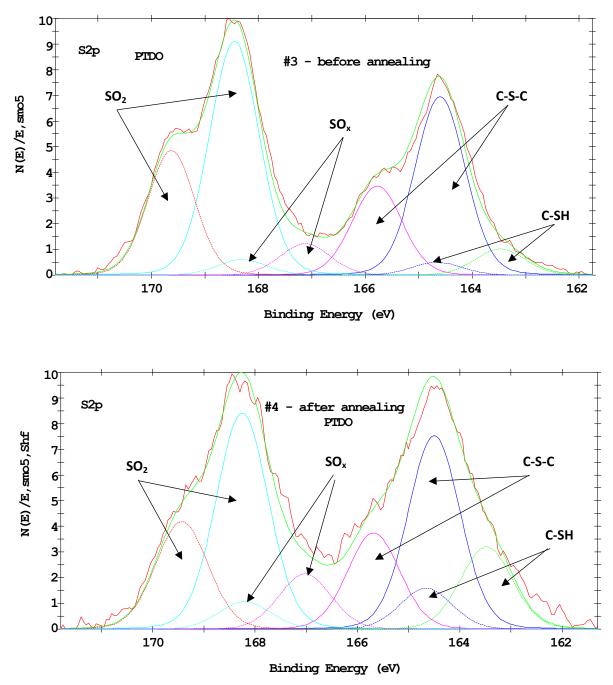


Figure S3 - XPS analysis deconvolution of S 2p signal in P3HT-TDO (a) before and (b) after annealing for 20 min at 150 $^{\circ}\text{C}.$

Following component bonds were determined from high-resolution XPS analysis of sulfur:

		C-SH	C-S-C	SO _x	SO ₂
P3HT-TDO	Before anneal.	5.53%	38.02%	6.68%	49.77%
		Total C-S - 43.55%		Total SO_x – 56.45%	
	After anneal.	15.01%	35.36%	10.01%	39.54%
		Total C-S - 50.37%		Total SO	_x - 49.55%

Table S1 – Component bonds percentage in P3HT-TDO XPS analysis of S 2p signal before and after annealing for 20 min at 150 $^\circ\text{C}.$

Following atomic compositions were determined from high-resolution XPS analysis of S/C for P3HT-TDO and P3HT/P3HT-TDO (1:1) thin films, before and after annealing for 20 min at 150 °C.

	P3HT-TDO	P3HT-TDO	
	Before annealing	After annealing	
С	70.87 %	73.37 %	
S	4.18 %	3.45 %	

Table S2 – Atomic compositions percentage in P3HT-TDO XPS analysis before and after annealing for 20 min at 150 $^{\circ}\text{C}.$

Summary of SO₂/S, S/C, and SO₂/C for P3HT-TDO thin film, before and after annealing for 20 min at 150 °C:

	P3HT-TDO	P3HT-TDO	
	Before annealing	After annealing	
\$0 ₂ : \$	1.30 : 1	0.98 : 1	
C : SO ₂	30.03 : 1	42.91 : 1	
C : S _{total}	17.95 : 1	21.27 : 1	

Table S3 – Atomic compositions ratios in P3HT-TDO XPS analysis before and after annealing for 20 min at 150 $^\circ\text{C}.$

2. <u>Attenuated Total Reflectance</u>

Oxidation of thiophene units was confirmed by ATR infrared analysis with peaks at 1142cm⁻¹ and 1314cm⁻¹ corresponding to symmetric and asymmetric stretching of SO₂ accordingly (see Fig. 1). Additional groups appear at 1714 cm⁻¹ and 1770 cm⁻¹ which are probably the result of additional oxidation reactions of P3HT with mCPBA.

Figure S4 - FTIR spectrum of P3HT and P3HT-TDO.

3. <u>¹H-NMR Analysis</u>

To analyze the structure of P3HT-TDO in more detailed manner, ¹H-NMR analysis was performed. It can be seen that ¹H-NMR spectrum of P3HT-TDO have several noticeable differences in comparison with P3HT. Aromatic protons at δ 6.98 ppm shifts to δ 7.35 ppm due to oxidation of the thiophene rings. Protons in α position on alkyl chain display two signals – δ 2.76 ppm attributed to unoxidized thiophene rings and δ 2.95 ppm attributed to oxidized thiophene

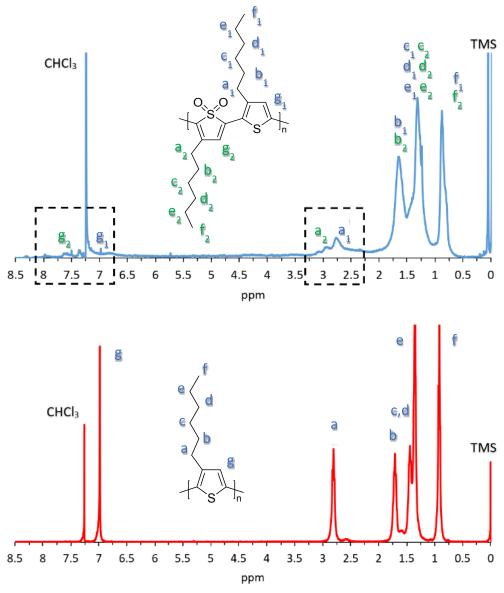
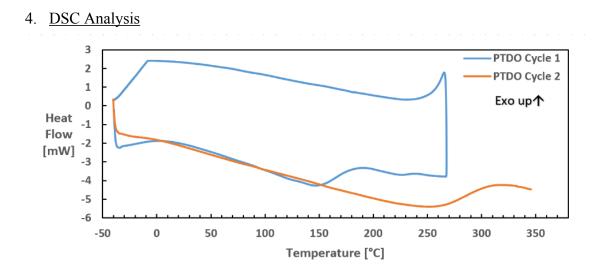



Figure S5 - ¹H-NMR spectra of P3HT-TDO (a) and P3HT(b).

rings.

P3HT-TDO cycle 1

P3HT-TDO cycle 2

Figure S6 - DSC analysis of P3HT-TDO.

5. <u>TGA-IR Analysis</u>

FTIR analysis of gaseous products was performed on bulk P3HT-TDO via TGA-FTIR apparatus under air atmosphere. P3HT-TDO analysis shows presence of CO₂, SO₂ and gaseous polymer segments (Figure S3). Gaseous SO₂ evolved in two stages, first stage related to cross-

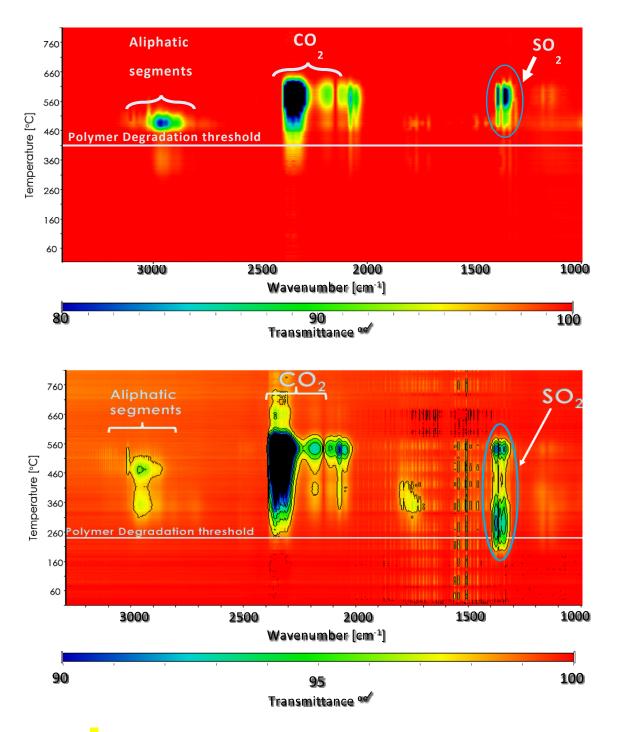


Figure S<mark>7</mark> - TGA-IR analysis of TGA gaseous products transmittance as function of temperature at different wavenumbers for (a) P3HT (b) P3HT-TDO.

linking reaction while the second stage corresponds to thermal decomposition of the polymer. Transmittance analysis shows release of SO₂ between 150°C and 420°C in the first stage associated with cross-linking, while release of CO₂ begins only at 250°C. Analysis of P3HT under same conditions shows no significant presence of SO₂ or CO₂ up to 300°C, while release of SO₂ is correlated with release of CO₂ – both due to thermal oxidation and decomposition of polymer structure.

6. PCBM crystal formation kinetics

P3HT/P3HT-TDO/PCBM thin films were prepared from 20 mg/ml solution in chlorobenzene (0.5:0.5:1; w/w) with 20 mg/ml P3HT/PCBM films as reference (1:1; w/w). The films were annealed at 170°C, 150°C and 130°C under vacuum for different periods of time.

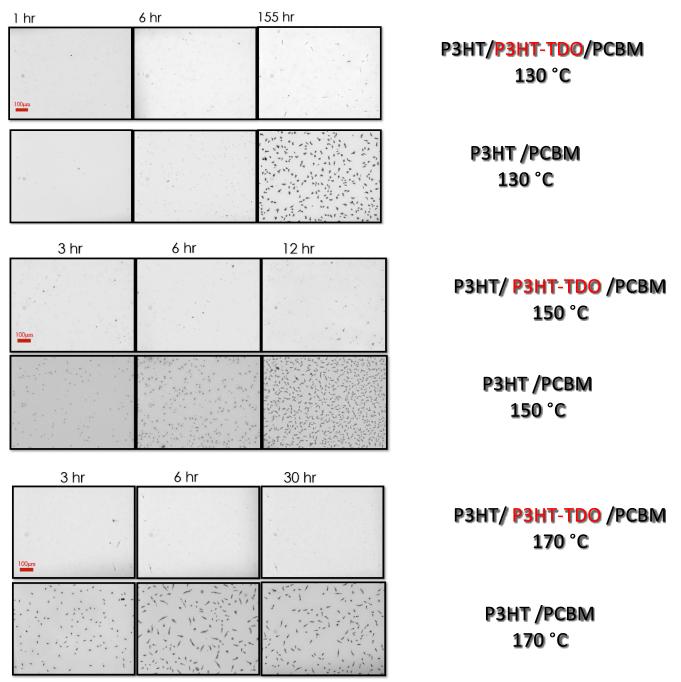


Figure S<mark>8</mark> - Microscopy images of thin films of P3HT/PCBM and P3HT/P3HT-TDO/PCBM annealed at different temperatures and periods of time.

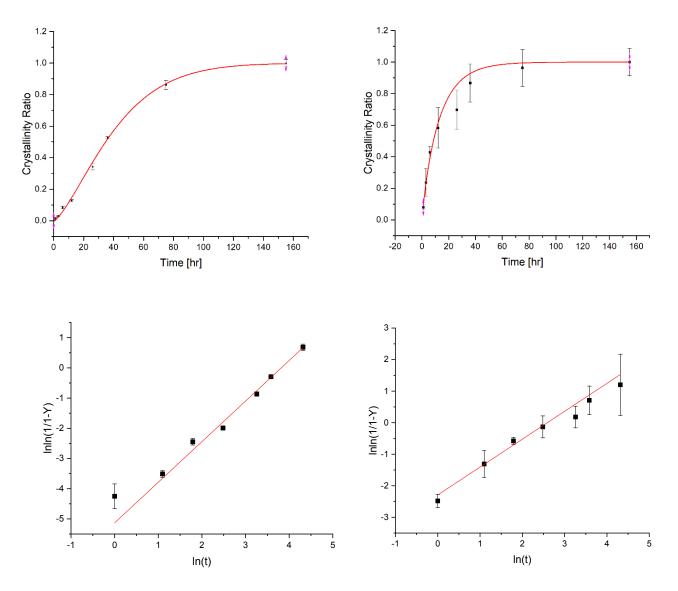


Figure 50 Kinetics of PCBM crystal growth in (a) P3HT/PCBM and (b) P3HT/P3HT-TDO/PCBM anne 30°C. Linearized expression of crystal growth for (c) P3HT/PCBM and (d) P3HT DO/PCBM (parameter Y is crystallinity Ratio).

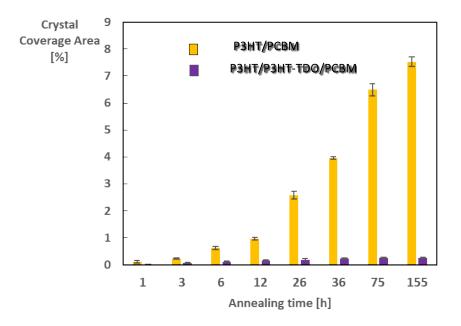


Figure S10 - Percent areas of P3HT/PCBM and P3HT/P3HT-TDO/PCBM thin films covered by PCBM crystals as a function of annealing time at 130 °C calculated based on microscopy images.

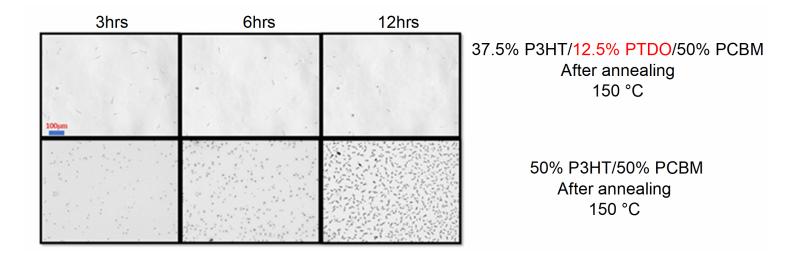


Figure S11 - Microscopy images of thin films of P3HT/PCBM and P3HT/P3HT-TDO/PCBM with 12.5% PTDO, annealed at 150 °C for different periods of time.

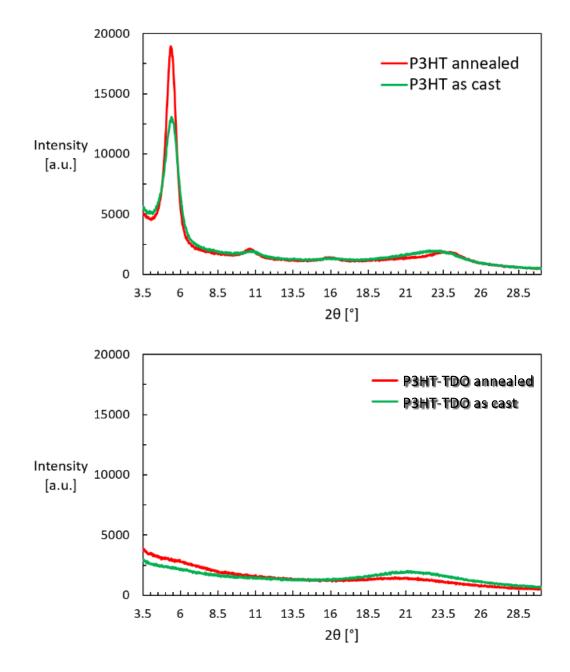


Figure S12- XRD analysis of (a) P3HT and (b)P3HT-TDO thin films as cast and after annealing.