Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

A Cost-Device Efficiency Balanced Spiro Based Hole Transport Material for Perovskite Solar Cells

Leila Haji-khan Mirzaei,^a Hashem Shahroosvand,^a* Gabriele Delle Monache,^b Mohammad Khaja Nazeeruddin^c and Melanie Pilkington^b*

^a Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran

^b Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S3A1, Canada

^e Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland

*Correspondence to: shahroos@znu.ac.ir, mpilkington@brocku.ca

Figure S1. Statistical distribution of the performance of 20 perovskite solar cells.

Figure S2. Stability of the photovoltaic characteristics over time for the PSCs based on Spiro-OMeIm and Spiro-OMeTAD. The stability test of devices are done under during exposure to full AM 1.5 simulated sunlight for 500 hours (humidity $\approx 40\%$).

Figure S3. J–V characteristic of thin films in hole-conducting only devices based on Spiro-OMeTAD and Spiro-OMeIm (pristine state).

Figure S4. UV-Vis spectra of Spiro-OMeIm without and with dopants in CHCl₃.

HTMs	HTMs	V _{oc} [V]	J _{sc} [mA cm-²]	FF [%]	PCE [%]	Ref.
$\begin{array}{c} R^{2} \\ R^{3} \\ R^{1} \\ H_{3}CO \\ \hline \\ R^{1} \\ R^{2} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{2} \\ R^{3} \\ R$	pp–spiro– OMeTAD(1)	1	20.7	71.1	14.9	[1]
	Pm–spiro– OMeTAD(2)	1.01	21.1	65.2	13.9	
	po–spiro– OMeTAD(3)	1.02	21.2	77.6	16.7	
OCH ₃ OCH ₃ OCH ₃ H ₃ CO- N- N- OCH ₃ N- OCH ₃ OCH ₃ N- OCH ₃ OCH ₃ OCH ₃ ()	Spiro-027 (4)	1.07	22.07	70	16.6	[2]

Table S1. The photovoltaic performance of previously reported spiro-cyclic HTMs.

$\begin{array}{ c c c c } & OCH_3 & OCH_3 \\ & H_3CO & H_3CO \\ & H_3CO & H_3CO \\ & H_3CO & H_3CO \\ & OCH_3 & OCH_3 \\ \hline & 2,4-Spiro-OMeTAD (7) \end{array}$	2,4-Spiro- OMeTAD (5)	0.956	25.6	70.1	17.2	[2]
$H_{3}CO + H_{3}CO + OCH_{3} + OCH_$	3,4-Spiro- OMeTAD (6)	0.752	20.1	59.9	9.1	[3]

References

[1] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, *J. Am. Chem. Soc.*, 2014, **136**, 7837.

[2] Y. Shi, Y. Xue, K. Hou, G. Meng, K. Wang, R. Chi, F. Chen, H. Ren, M. Pang and C. Hao, *RSC Adv.*, 2016, **6**, 96990.

[3] M.-D .Zhang, D.-X. Zhao, L. Chen, N. Pan, C.-Y. Huang, H. Cao and M.-D. Chen, *Sol. Energy Mater. Sol. Cells*, 2018, **176**, 318.