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1 Comparison of the sensitivity of the pressure sensor in this work and literature.

Table S1: Comparison of the sensitivity of the pressure sensor in this work and literature.

Material Sensitivity Pressure range Principle Diaphragm geometry Refs

4H-SiC 10.83× 10−5 kPa−1 90÷300 kPa Piezoresistive
Square:
5mm× 5mm×70µm

1

3C-SiC nanowire 5× 10−4 kPa−1 10÷50 kPa Piezoresistive
Square:
5mm× 5mm×150µm

2

Si Single crystalline 3.2× 10−4 kPa−1 -20÷20 kPa Piezoresistive Cantilever 3

Si Single crystalline 2.4× 10−4 kPa−1 0÷100 kPa Piezoresistive
Radius: 20 µm
Thickness: 1.2 µm

4

Si polysilicon nanofilm 2.896× 10−5 kPa−1 < 2.5 MPa Piezoresistive
Rectangular: 0.3mm×
1.5mm×6.3µm

5

n-type 4H-SiC 2.68× 10−6 kPa−1 < 6000 kPa Piezoresistive
Radius: 1 mm
Thickness: 50 µm

6

3C-SiC/Si 0.87 kPa−1 5÷70 kPa
Opto-electronic
coupling

Square:
5mm× 5mm×225µm

This work

Although the diaphragm in this work was quite thick compared to previous reports (such as 225µm compared with 150 µm and 70
µm1,2), the sensitivity of the sensor was much higher than that of previous ones. The ensitivity of the pressure sensor in this work is
more than 1,700 times higher than the best results shown in the above table2.
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2 Pressure sensor design
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Figure S1: Pressure sensor design.

Geometry of the diaphragm: Circular diaphragm and rectangular diaphragm are two common types of diaphragm used in designs
of micromachined pressure sensors. With the same chip size, the pressure sensor with a square diaphragm has maximum stress/strain
of 1.64 times higher, hence 1.64 times more sensitive, compared to a circle one. Moreover, a square diaphragm is more suitable for
anisotropic wet etching method. Thus, in this research, a square diaphragm was used in our design.

Position and direction of the piezoresistor: In term of location and direction of sensing element, to maximize the sensitivity of the
pressure sensor, the sensing element is fabricated at middle of the edge of the diaphragm where induced tress/strain is maximum, and
the piezoresistor is aligned or perpendicular with maximum piezoresistive coefficient directions. With using material p-type 3C-SiC/Si
(100) whose maximum piezoresistive coefficient direction is [110], the piezoresistor was aligned in [110] direction in our pressure. In
this prototype, instead of integrating light source in the pressure sensor, we used external light source which is simple for controlling
light beam position and light intensity.
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3 Characteristics of the 3C-SiC thin film grown on the Si substrate
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Figure S2: Characteristics of the 3C-SiC thin film grown on the Si substrate. (A) TEM image of 3C-SiC grown on the Si. (B) SAED image of the
3C-SiC. (C) XRD graph of 3C-SiC grown on the Si.
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4 Pressure sensors

ba

Figure S3: (a) The pressure sensor after attaching to an acrylic holder. (b) The Scanning Electron Microscope (SEM) image of the back side of the
diaphragm.
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5 Performance characterisation
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Figure S4: (a) Experimental schematic and (b) Experimental setup. The pressure sensor was mounted on the surface of a pressure chamber. The
air pressure was accurately controlled by an ELVEFLOW OB1 pressure controller and applied to the back side of the diaphragm. A dark chamber was
used to isolate the pressure sensor from unwanted background light. The visible light illuminated on the surface of the sensing element via a small
window on the roof of the chamber. The tuning current was accurately controlled by a Keithley 2450 SourceMeter, which was simultaneously utilized
for measuring voltage. Both the source meter and pressure controller were connected to computer for data collection.
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6 Photovoltage and photocurrent
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Figure S5: The repeatabilities of photocurrent and lateral photovoltage. The repeatability of the photocurrent and lateral photovoltage in the sens-
ing element when the non-uniform visible light was periodically turned ON and OFF. The excellent repeatability of photocurrent and lateral photovoltage
were observed. (a) As the light was turned OFF, the photocurrent was 0 µA, while this value was approximately 68.2 µA under the light illumination.
(b) The lateral photovoltage was 0 mV under darkness, and around -25 mV under the light condition.
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7 Tunability of the sensitivity
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Figure S6: Effect of the tuning current on enhancing pressure sensitivity by opto-electronic coupling. (a) The pressure sensitivity versus
the tuning current on whole range of the tuning current. Sensitivity of the pressure sensor significantly changed versus the tuning current under
light illumination, while the sensitivity under unilluminated condition is independent of the supplied current. This also demonstrated dependence of
piezoresistive effect on the tuning current under the illuminated condition. Enlarged views of the sensitivity with the tuning current ranging: (b) from 50
µA to 67.4 µA; (c) from 50 µA to 69 µA, and (d) from 69 µA to 90 µA. Under the illuminated condition, when the tuning current increased from 50 µA
to 67.4 µA, the pressure sensitivity was positive and rose dramatically from 5.1 × 10−4 kPa−1 to 1.22 × 10−2 kPa−1. The sensitivity is highest when
the tuning current in the optimal range (50 µA to 69 µA). This sensitivity decreased significantly in the negative range to 3.92 ×10−4 kPa−1 when the
current increased further to 90 µA.
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8 Four-point measurement method
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Figure S7: Four-point measurement method.
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9 Generation of the photocurrent and redistribution of hole concentration by optimizing the
tuning current

a)

Light 

source B

Hole
Electron

p - Si

p - SiC

Heterojunction

Aluminium
+

A

Iph

E
0

Hole

concentration

Electrincal

Potential

Hole gradient

A B

Potential gradient

Vph

A B

b)

c)

A

Ammeter

Figure S8: (a) The generation of the photocurrent under the illuminated condition. Under the illumination, photons were injected to excite charge
carriers (electrons/holes) in the 3C-SiC/Si heterojunction and the Si substrate to generate electron/hole pairs (EHPs). In the heterojunction region,
these photogenerated electrons/holes were separated by the built-in electric field E0, where the photogenerated holes and electrons moved toward the
3C-SiC nanofilm and Si substrate, respectively. In addition, photogenerated holes in the Si substrate hypothetically migrated to the 3C-SiC layer by the
tunnelling mechanism. As a consequence, the hole concentration in 3C-SiC increased. When the external circuit was shorted, the only current in the
circuit was the photocurrent (Iph). (b) Hole concentration under nonuniform illumination. The photogenerated holes migrated into 3C-SiC differently in
lateral direction, hence resulting in a gradient of hole concentration within the 3C-SiC nanofilm. (c) Electrical potential gradient between two electrodes
A and B of the sensing element.
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Figure S9: Redistribution of hole carrier by optimizing tuning current. By supplying a tuning current I from electrode A to electrode B of the
sensing element, an external electrical field E was created. This external electric field E changed energy of the carriers, hence redistributing the
carriers in the 3C-SiC layer. By optimizing the tuning current I, the holes are uniformly redistributed in the 3C-SiC layer from electrode A to electrode B
areas, eliminating the gradient of hole concentration. .
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10 Long-time stability test results under dark condition
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Figure S10: The stability of the pressure sensor under dark condition. The cyclic test was conducted under dark environment in two consecutive
days by applying and releasing pressure of 60 kPa. (a) and (b) are signal responses in the first day and the second day. (c) and (d) are enlarged views
of signal response at the beginning seconds and the ending seconds of the 1000-second recorded result. Although, absolute change of the signal was
quite stable over time, the signal drifted significantly over a long duration.
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