SUPPORTING INFORMATION

Red persistent and photostimulable phosphor SrLiAl₃N₄: Eu²⁺

Shiyou Zhang, Zhen Song, Shuxin Wang, Zhizhen Wang, Feixiong Wang, Quanlin Liu*

The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science & Engineering, University of Science and Technology Beijing, Beijing 100083, China.

* Corresponding Author: E-mail address: qlliu@ustb.edu.cn (Quanlin Liu)

Compound	SrLiAl ₃ N ₄
Space Group	<i>P</i> -3 <i>m</i> 1
<i>a</i> , Å	5.855 (1)
<i>b</i> , Å	7.483 (4)
<i>c</i> , Å	9.932 (2)
<i>α</i> , Å	83.61 (9)
β, Å	76.76 (7)
γ, Å	79.54 (9)
<i>V</i> , Å ³	415.50 (1)
R_p , %	14.0
$R_{wp}, \%$	14.1
R_{exp} , %	8.59
χ^2	1.64

Table S1. Main parameters of processing and refinement of the SrLiAl₃N₄ (SLAN) samples.

Table S2. Fractional atomic coordinates and isotropic displacement parameters (Å²) of SLAN.

Atom	x	у	Ζ	$B_{\rm iso}$	Occ.
Sr1	0.001 (7)	0.131 (7)	0.124 (3)	0.114 (6)	1
Sr2	0.020 (4)	0.382 (5)	0.375 (1)	0.077 (9)	1
Al1	0.537 (1)	0.955 (3)	0.127 (8)	0.299 (5)	1
Al2	0.172 (1)	0.957 (5)	0.388 (8)	0.000 (0)	1
Al3	0.169 (8)	0.703 (4)	0.155 (2)	0.000 (0)	1

Al4	0.814 (8)	0.563 (0)	0.107 (7)	0.713 (2)	1	
Al5	0.468 (8)	0.564 (8)	0.373 (5)	0.681 (5)	1	
Al6	0.571 (2)	0.190 (4)	0.362 (6)	0.000 (0)	1	
N1	0.374 (7)	0.854 (7)	0.005 (3)	0.000 (0)	1	
N2	0.388 (5)	0.357 (2)	0.512 (9)	0.000 (0)	1	
N3	0.372 (4)	0.111 (4)	0.276 (3)	0.943 (7)	1	
N4	0.156 (9)	0.939 (9)	0.597 (0)	0.000 (0)	1	
N5	0.843 (2)	0.775 (3)	0.160 (5)	0.252 (2)	1	
N6	0.240 (2)	0.459 (2)	0.089 (0)	0.000 (0)	1	
N7	0.203 (1)	0.705 (6)	0.349 (7)	0.000 (0)	1	
N8	0.671 (4)	0.386 (9)	0.246 (2)	0.000 (0)	1	
Li1	0.482 (8)	0.282 (6)	0.147 (6)	0.000 (0)	1	
Li2	0.223 (2)	0.180 (8)	0.656 (7)	0.000 (0)	1	
						-

Fig. S1. DOS and computed electronic band dispersion of (a) the perfect compound SLAN and (b) SLAN with $V_{N(1)}$ (c) $V_{N(2)}$ (d) $V_{N(3)}$ (e) $V_{N(4)}$ (f) $V_{N(5)}$ (g) $V_{N(6)}$ (h) $V_{N(7)}$ (i) $V_{N(8)}$

Table S3. Parameter value that determine the HRBE schemes of SLAN, including the energy for electrons in the 4f-ground state of divalent $E_{4f}(Ln^{2+})$ and trivalent $E_{4f}(Ln^{3+})$, the energy for the lowest 5d state of divalent $E_{5d}(Ln^{2+})$ and trivalent $E_{5d}(Ln^{3+})$ lanthanides and the band gap between the top of valence band and the bottom of conduction band (E_{VC}).

Ln	n	$E_{4f}(Ln^{2+})/eV$	$E_{4f}(Ln^{3+})/eV$	$E_{5d}(Ln^{2+})/eV$	$E_{5d}(Ln^{3+})/eV$
La	0	8.26		5.23	
Ce	1	6.78	1.81	5.07	4.21
Pr	2	5.52	-0.04	5.02	3.87
Nd	3	5.17	-1.53	4.95	3.67
Pm	4	4.99	-1.97	4.86	3.55
Sm	5	3.90	-2.16	4.81	3.46
Eu	6	2.65	-3.43	4.78	3.35
Gd	7	7.21	-4.77	4.92	3.31
Tb	8	5.86	0.14	4.96	4.20
Dy	9	4.92	-1.28	5.00	4.25
Но	10	4.65	-2.38	4.81	4.00
Er	11	5.23	-2.31	5.26	3.83
Tm	12	4.37	-2.15	5.23	3.88

Yb	13	3.08	-3.19	5.21	3.95	
Lu	14		-4.44		4.10	
-10	6 aV					

 $E_{VC} = 4.96 \text{ eV}$