Electronic Supplementary Information

Interstitial oxygen defect induced mechanoluminescence in $\mathbf{K C a}\left(\mathrm{PO}_{3}\right)_{3}: \mathbf{M n}^{\mathbf{2 +}}$
Huimin Chen, ${ }^{a}$ Yuxing Bai, ${ }^{a}$ Lirong Zheng, ${ }^{\text {b }}$ Li Wu, ${ }^{* a}$ Liwei Wu, ${ }^{a}$ Yongfa Kong, ${ }^{a}$ Yi Zhang *c and Jingjun Xu ${ }^{\text {a }}$
${ }^{a}$ Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China. E-mail: *lwu@nankai.edu.cn.
${ }^{\text {b }}$ Multi-Discipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
${ }^{\mathrm{c}}$ College of Electronic Information and Optical Engineering and Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China. E-mail: *yizhang@nankai.edu.cn.

Material preparation and characterization

Materials and synthesis: A series of solid solutions of $\mathrm{KCa}_{1-y} \mathrm{Mg}_{y}\left(\mathrm{PO}_{3}\right)_{3}: \mathrm{Mn}^{2+}$ were synthesized via a high-temperature solid-state method. Analytical purity $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CaCO}_{3}$, $\mathrm{MgO}, \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ and MnO_{2} were ground and sintered at $600{ }^{\circ} \mathrm{C}$ for 6 h and $815^{\circ} \mathrm{C}$ for 12 h in the ambient atmosphere with an intermediate grinding step in between the two sintering processes. Finally, the sintered products were well ground after cooling to room temperature.

Characterization: The XRD patterns were collected on an X-ray diffractometer (X'Pert Pro, PANalytical B.V., Netherlands) and the structural refinements were collected over a 2θ range from 10° to 120° at intervals of 0.017°. Scanning electron microscopy (SEM, SU8020, HITACHI, Japan) with energy dispersive X-ray spectroscopy (EDS, EMAX, HORIBA) was used to characterize the morphologies of the powder samples. The XPS spectra were obtained using a Thermo Scientific ESCALAB 250Xi (America) and calibrated to a C 1s electron peak at 284.8 eV . The XAFS spectra were tested via the 1W1B beam line (Beijing Synchrotron Radiation Facility). The PLE and PL spectra were measured by a spectrofluorometer (FLS920, Edinburgh Instruments, England). The diffuse reflectance spectra were collected by a UV/Vis/NIR spectrophotometer (Cary5000, America). A grating spectrometer (ANDOR,

Kymera 328i, England) was used to collect the ML spectra. After irradiating with 365 nm UV light for 10 min , the TL curves of the powder samples were obtained using a thermoluminescence meter (FJ427A1, CNCS, China).

Computational methods: All the DFT calculations were implemented with the Vienna ab initio simulation package (VASP). The electron-ion interactions were determined using the projector augmented wave pseudo-potential method. ${ }^{1} \mathrm{~K}\left(3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{1}\right), \mathrm{Ca}\left(3 \mathrm{p}^{6} 4 \mathrm{~s}^{2}\right), \mathrm{Mg}\left(3 \mathrm{~s}^{2}\right), \mathrm{P}$ $\left(3 s^{2} 3 p^{3}\right), \mathrm{O}\left(2 s^{2} 2 p^{4}\right)$ and $\mathrm{Mn}\left(3 \mathrm{~d}^{6} 4 \mathrm{~s}^{1}\right)$ electrons were treated as their own valence electrons. To investigate the density of states accurately, the spin-polarized generalized gradient approximation ${ }^{2}$ with the Perdew-Burke-Ernzerhof ${ }^{3}$ functional was adopted to describe the electronic exchange-correlation potential. The cutoff energy of 400 eV was used for the plane-wave basis set to expand the pseudo valence wave function. A $2 \times 2 \times 1$ supercell was constructed, in which Ca ions were substituted by Mn and Mg ions. Moreover, k -point grids for the Brillouin zone were generated with $9 \times 9 \times 6$ and $1 \times 1 \times 1$ G-centered models for the primitive cell and supercell, respectively. All the optimization processes were considered to satisfy the convergence criterion when the total energy change was less than $1 \times 10^{-4} \mathrm{eV}$ per step, and the maximum force was less than $5 \times 10^{-2} \mathrm{eV} \AA^{-1}$ per atom.

Fig. S1 The XRD patterns of KCPO: $x \mathrm{Mn}^{2+}$.

Fig. S2 (a) SEM image and elemental mapping images of KCPO:0.23 Mn^{2+}. (b) EDS analysis of KCPO:0.23 Mn^{2+} detected in the selected square area in (a).

PLE and PL spectra of KCPO:Mn are measured, as shown in Fig. 1c. The excitation spectra from $300-460 \mathrm{~nm}$ can be ascribed to $\mathrm{Mn}^{2+} \mathrm{d}-\mathrm{d}$ transitions. The narrow band centered at 341 nm comes from ${ }^{6} \mathrm{~A}_{1}-4 \mathrm{E}\left({ }^{4} \mathrm{D}\right)$ transition. The peaks from 326 to 370 nm originate from ${ }^{6} \mathrm{~A}_{1}-{ }^{-4} \mathrm{~T}_{2}(\mathrm{D})$ transition. The peaks centered at $382 \mathrm{~nm}, 400 \mathrm{~nm}$, and 427 nm are from the Mn^{2+} transition of ${ }^{6} \mathrm{~A}_{1}-{ }^{4} \mathrm{~A}_{1},{ }^{4} \mathrm{E}\left({ }^{4} \mathrm{G}\right),{ }^{6} \mathrm{~A}_{1}-{ }^{4} \mathrm{~T}_{2}\left({ }^{4} \mathrm{G}\right)$, and ${ }^{6} \mathrm{~A}_{1}-{ }^{4} \mathrm{~T}_{1}\left({ }^{4} \mathrm{G}\right) .{ }^{4}$ Monitored at different excitation wavelengths, the emission spectra show broad yellow bands with the center of 578 nm , which is attributed to the transition from ${ }^{4} \mathrm{~T}_{1}\left({ }^{4} \mathrm{G}\right)$ to ${ }^{6} \mathrm{~A}_{1}\left({ }^{6} \mathrm{~S}\right)$ of Mn^{2+} ions. ${ }^{5}$ The emission intensity increases with Mn^{2+} ions concentration until reaching the maximum of $x=0.23$, then the emission intensity decreases when $x>0.23$, as shown in Fig. S3. As Mn ${ }^{2+}$ ions increase, the distance between them decreases. The following equation is used to calculate the critical distance $\left(R_{\mathrm{c}}\right)$: ${ }^{6}$

$$
\begin{equation*}
R_{\mathrm{c}}=2\left[\frac{3 V}{4 \pi x_{\mathrm{c}} N}\right]^{1 / 3} \tag{1}
\end{equation*}
$$

where V refers to the unit cell volume, x_{c} is the critical concentration of Mn^{2+}, and N represents the number of cation sites in each unit cell. For KCPO: $x \mathrm{Mn}^{2+}, V=416.608 \AA^{3}, x_{\mathrm{c}}=$ $0.23, \mathrm{~N}=2, R_{\mathrm{c}}=12 \AA$, which greater than $5 \AA$, indicating that the concentration quenching is caused by multi-polar interaction. Based on Dexter's theory, the interaction type is represented by the following equation: ${ }^{7}$

$$
\begin{equation*}
\frac{\mathrm{I}}{x}=\frac{K}{1+\beta(x)^{\frac{\theta}{3}}} \tag{2}
\end{equation*}
$$

where I denotes the emission intensity, x is the concentration of activator ions, β and K are constants. $\theta=6,8,10$ refers to the dipole-dipole, dipole-quadrupole, and quadrupolequadrupole interaction mechanism, respectively. According to the slope value of -3.184 from
the inset, the obtained θ value is 9.55 , which is close to 10 , indicating that the concentration quenching of KCPO: $x \mathrm{Mn}^{2+}$ is caused by quadrupole-quadrupole interaction. ${ }^{5}$

Fig. S3 The emission intensity versus Mn^{2+} concentration of KCPO: $x \mathrm{Mn}^{2+}$. The inset is the relationship between $\lg (I / x)$ and $\lg (x)$.

Fig. S4 shows the ultraviolet-visible diffuse reflectance spectra of $\mathrm{KCPO}: 0.23 \mathrm{Mn}^{2+}$. The decreasing reflectance from 200 to 400 nm is attributed to the host absorption. ${ }^{8}$ The absorption occurred at about 400-650 nm belongs to the self-trapped exciton emission from the laser experiment. ${ }^{9}$ The band gap E_{g} is determined by the Kubelka-Munk equation: ${ }^{10}$

$$
\begin{equation*}
\left[F\left(R_{\infty}\right) h v\right]^{n}=A\left(h v-E_{\mathrm{g}}\right) \tag{3}
\end{equation*}
$$

where $h v$ represents the photon energy, A is the proportional constant, and $n=2$ denotes the direct allowed transition. The Kubelka-Munk absorption coefficient $F\left(R_{\infty}\right)$ is calculated according to the following equation:

$$
\begin{equation*}
F\left(R_{\infty}\right)=(1-R)^{2} / 2 R \tag{4}
\end{equation*}
$$

According to the DFT calculations, the KCPO matrix belongs to the direct energy band structure, thus the curves of $\left[F\left(R_{\infty}\right) h v\right]^{2}$ to $h v$ are plotted and E_{g} is obtained by extrapolating the linear portion of the plot to $\left[F\left(R_{\infty}\right) h \nu\right]^{2}=0$. As shown in the insets of Fig. S4, the optical band gap value of $\mathrm{KCPO}: 0.23 \mathrm{Mn}^{2+}$ is 5.45 eV .

Fig. S4 The ultraviolet-visible diffuse reflectance spectra of KCPO:0.23 Mn^{2+}.

Fig. 55 The high-resolution XPS peaks of Mn 2 p of $\mathrm{KCPO}: 0.1 \mathrm{Mn}^{2+}$.

Fig. S6 (a) The total energies with various types of defect complexes versus different Mg^{2+} concentration. (b, c) The formation energies of defect complexes and point defects versus different Mg^{2+} concentration.

Fig. S7 (a) The XRD patterns of KCMPO:0.23 Mn^{2+}. (b-d) Rietveld refinement results of KCMPO: $0.23 \mathrm{Mn}^{2+}$ at $y=0.4,0.6$, and 0.77 . The small black circles and red continuous lines represent the experimental and the calculated values respectively; the green vertical bars depict the position of Bragg peaks; the blue trace indicates the difference between the experimental and the calculated intensity values. (e-g) Dependence of the cell volume and cell parameters on y in KCMPO: $0.23 \mathrm{Mn}^{2+}(y=0,0.4,0.6$, and 0.77). (h , i) The dependence of $\mathrm{d}(\mathrm{Ca} / \mathrm{Mg} / \mathrm{Mn}-\mathrm{O})$ and $\mathrm{d}(\mathrm{K}-\mathrm{O})$ bond length on Mg^{2+} concentration.

Fig. S8 (a) The PLE spectra of KCMPO:0.23 Mn^{2+}. (b) The normalized PL spectra of KCMPO:0.23 Mn^{2+}.

Fig. S9 (a) The TL curves of KCMPO: $0.23 \mathrm{Mn}^{2+}(y=0,0.4,0.6,0.7,0.77)$ at the heating rate of $4{ }^{\circ} \mathrm{C} / \mathrm{s}$. (b) TL curves of $\mathrm{KC}_{0.17} \mathrm{M}_{0.6} \mathrm{PO}: 0.23 \mathrm{Mn}^{2+}$ at different heating rate and the Hoogenstraaten plots.

Fig. S10 The optimized local atomic arrangement structures around Mn of $\mathrm{KCMPO}: 0.23 \mathrm{Mn}^{2+}$ ($y=0,0.4,0.6,0.77$).

Table S1 Lattice parameters and agreement factors for KCMPO:0.23 Mn^{2+} refined by Rietveld method.

Samples	$y=0$	$y=0.4$	$y=0.6$	$y=0.77$
Crystal system	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	$P-6 c 2$	$P-6 c 2$	$P-6 c 2$	$P-6 c 2$
a / \AA	6.7827(1)	6.7056 (3)	6.6454(2)	6.6344(1)
c/ \AA	10.2905(1)	10.0104(5)	9.8889(2)	9.8340 (1)
V / \AA^{3}	409.9846(2)	389.8139(3)	378.1975(2)	374.8511(3)
Z	2	2	2	2
$\mathrm{d}(\mathrm{Ca} / \mathrm{Mg} / \mathrm{Mn}-\mathrm{O})$	2.3104(3)	2.2334(4)	2.1795(4)	2.1162(1)
$\mathrm{d}(\mathrm{K}-\mathrm{O})$	2.7798 (3)	2.8048(5)	2.8116(4)	2.8283(1)
Diffractometer	X'Pert Pro, PANalytical	X'Pert Pro, PANalytical	X'Pert Pro, PANalytical	X'Pert Pro, PANalytical
Radiation type	$\mathrm{Cu}-\mathrm{K} \alpha$	$\mathrm{Cu}-\mathrm{K} \alpha$	$\mathrm{Cu}-\mathrm{K} \alpha$	$\mathrm{Cu}-\mathrm{K} \alpha$
Wavelength (\AA)	1.5406	1.5406	1.5406	1.5406
Profile range (${ }^{\circ} 2 \theta$)	11.01-120	11.01-120	11.01-120	11.01-120
Step size (${ }^{\circ} 2 \theta$)	0.017	0.017	0.017	0.017
No. observation (N)	7941	7941	8000	7941
No. contribution reflections ($\mathrm{K} \alpha 1+\mathrm{K} 22)$	676	676	646	614
No. structure parameters (P_{1})	17	17	17	17
No. profile parameters (P_{2})	13	12	12	11
$\mathrm{R}_{\mathrm{p}}(\%)$	5.42	7.17	6.86	5.58
$\mathrm{R}_{\mathrm{wp}}(\%)$	7.00	9.78	9.02	7.31
$\mathrm{R}_{\exp }(\%)$	3.96	3.06	3.08	3.82
$\mathrm{R}_{\text {Bragg }}$ (\%)	7.04	9.65	9.50	9.48

Table S2 Refinement atomic positions for KCMPO:0.23 Mn^{2+}.

Samples	$y=0$	$y=0.4$	$y=0.6$	$y=0.77$
Ca (2c)				
x	1/3	1/3	1/3	-
y	2/3	2/3	2/3	-
z	0	0	0	-
Occupancy	0.7472 (1)	0.3700 (1)	0.1701 (1)	-
Mg (2c)				
x	-	1/3	1/3	1/3
y	-	2/3	2/3	2/3
z	-	0	0	0
Occupancy	-	0.3925 (2)	0.5826 (1)	0.7557 (1)
Mn (2c)				
x	1/3	1/3	1/3	1/3
y	2/3	2/3	2/3	2/3
z	0	0	0	0
Occupancy	0.2528 (1)	0.2375 (1)	0.2473 (2)	0.2443 (2)
K (2e)				
x	2/3	2/3	2/3	2/3
y	1/3	1/3	1/3	1/3
z	0	0	0	0
Occupancy	1.0000	1.0000	1.0000	1.0000
P (6k)				
x	0.7298 (4)	0.2262 (7)	0.2226 (6)	0.2246 (3)
y	0.9602 (4)	-0.0488 (9)	-0.0540 (8)	-0.0570 (3)
z	3/4	1/4	1/4	1/4
Occupancy	1.0000	1.0000	1.0000	1.0000
O1 (6k)				
x	0.8066 (7)	0.2452 (16)	0.2513 (15)	0.2396 (8)
y	0.7668 (8)	0.1933 (11)	0.1867 (13)	0.1901 (7)
z	3/4	1/4	1/4	1/4
Occupancy	1.0000	1.0000	1.0000	1.0000
O2 (121)				
x	0.6175 (5)	0.3206 (9)	0.3176 (8)	0.3212 (4)
y	0.9481 (7)	-0.0640 (8)	-0.0714 (7)	-0.0800 (0)
z	0.8748 (2)	1/8	1/8	1/8
Occupancy	1.0000	1.0000	1.0000	1.0000

Table S3 The charge numbers of Mn ions for $\mathrm{KCPO}: 0.23 \mathrm{Mn}^{2+}$.

KCPO:0.23 Mn^{2+}	Original Valence Electron	Remaning Valence Electron	Transfer Electron
Mn 1	7	5.2931	1.7069
Mn 2	7	5.2973	1.7027

Table S4 The XPS elemental analysis of KCPO:0.23 Mn^{2+}.

Element	K	Ca	P	O	Mn
Theory (\%)	12.24	9.66	29.08	45.07	3.95
XPS value (\%)	11.67	9.01	23.38	52.27	3.67

Table S5 The total Helmholtz free energies and formation energies of $\mathrm{KCPO}: 0.23 \mathrm{Mn}^{2+}$ with different kinds of defects.

Samples	$E_{\text {tot-imperfect }}(\mathrm{eV})$			$E_{\mathrm{f}}(\mathrm{eV})$			
				Defect Complex		Point Defect	
KCPO:0.23Mn	$\mathrm{V}_{\mathrm{Ca}}+\mathrm{Mn}_{\mathrm{Ca}}$	$\mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}}$	$\mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}}+\mathrm{V}_{\mathrm{Ca}}$	$\mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}}$	$\mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}}+\mathrm{V}_{\mathrm{Ca}}$	O_{i}	$\mathrm{Mn}_{\text {Ca }}$
	-767.80	-797.60	-782.50	10.22	18.92	-3.78	5.02

Table S6 The average bond lengths of $\mathrm{Ca}-\mathrm{O}, \mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mg}-\mathrm{O}$ for $\mathrm{KCMPO}: 0.23 \mathrm{Mn}^{2+}$. $(y=$ $0,0.25,0.4,0.6,0.7,0.77$).

	$\mathrm{Ca}-\mathrm{O}(\AA)$	$\mathrm{Mn}-\mathrm{O}(\AA)$	$\mathrm{Mg}-\mathrm{O}(\AA)$
$y=0$	2.38866	2.15086	-
$y=0.25$	2.33512	2.41656	2.10998
$y=0.4$	2.36500	2.23587	2.16382
$y=0.6$	2.38954	2.18255	2.15658
$y=0.7$	2.33936	2.44636	2.15835
$y=0.77$	-	2.63382	2.17064

Table S7 The total Helmholtz free energies and formation energies of KCMPO:0.23 $\mathrm{Mn}^{2+}(y=$ $0.4,0.6,0.77$).

Samples	$E_{\text {tot-imperfect }}(\mathrm{eV})$			$E_{\mathrm{f}}(\mathrm{eV})$				
	$\begin{gathered} \mathrm{V}_{\mathrm{Ca}}+\mathrm{Mn}_{\mathrm{Ca}} \\ +\mathrm{Mg}_{\mathrm{Ca}} \end{gathered}$	$\begin{gathered} \mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}} \\ +\mathrm{Mg}_{\mathrm{Ca}} \end{gathered}$	$\begin{gathered} \mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}} \\ +\mathrm{Mg}_{\mathrm{Ca}}+\mathrm{V}_{\mathrm{Ca}} \end{gathered}$	Defect Complex		Point Defect		
				$\begin{gathered} \mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}} \\ +\mathrm{Mg}_{\mathrm{Ca}} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{O}_{\mathrm{i}}+\mathrm{Mn}_{\mathrm{Ca}} \\ +\mathrm{Mg}_{\mathrm{Ca}}+\mathrm{V}_{\mathrm{Ca}} \\ \hline \end{array}$	O_{i}	$\mathrm{Mn}_{\mathrm{Ca}}$	$\mathrm{Mg}_{\mathrm{Ca}}$
$y=0.4$	-764.16	-789.41	-776.56	17.21	23.66	4.41	13.21	-0.09
$y=0.6$	-762.50	-789.75	-774.62	16.47	25.2	4.07	12.87	1.07
$y=0.77$	-761.80	-785.78	-774.12	19.64	25.3	8.04	16.84	8.04

References

1 B. Y. Qu, B. Zhang, L. Wang, R. L. Zhou and X. C. Zeng, Chem. Mater., 2015, 27, 21952202.

2 John P. Perdew, Kieron Burke and M. Ernzerhof, Physiacal Review Letters, 1996, 77, 3865-3868.
3 Hendrik J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
4 L. E. Orgel, J. Chem. Phys., 1955, 23, 1004-1014.
5 L. Wu, B. Wang, Y. Zhang, L. Li, H. R. Wang, H. Yi, Y. F. Kong and J. J. Xu, Dalton Trans., 2014, 43, 13845-13851.
6 G. Blasse, Phys. Lett. A, 1968, 28, 444-445.
7 D. L. Dexter and J. H. Schulman, J. Chem. Phys., 1954, 22, 1063-1070.
8 L. W. Wu, Y. X. Bai, L. Wu, H. Yi, X. Z. Zhang, L. X. Zhang, Y. F. Kong, Y. Zhang and J. J. Xu, Dalton Trans., 2018, 47, 13094-13105.

9 L. Wu, X. L. Chen, Y. P. Xu and Y. P. Sun, Inorg. Chem., 2006, 45, 3042-3047.
10 J. G. Cheng, P. L. Li, Z. J. Wang, Y. S. Sun, Q. Y. Bai, Z. L. Li, M. M. Tian, C. Wang and Z. P. Yang, J. Mater. Chem. C, 2017, 5, 127-133.

