Electronic Supplementary information

Durable organic solar cells produced by in-situ encapsulation of an air-sensitive natural organic semiconductor by the fullerene derivative and the metal oxide layer

Takayuki Uchiyama, Takashi Sano, Yoshiko Okada-Shudo and Varun Vohra *

^{*} varun.vohra@uec.ac.jp

Blend ratio	Irradiation time [minutes]				
(bCar : PC71BM)	0	3	10	60	1440
1:0					
1:1					
1:2					
1:4					
1:4 + electrode					

Figure S1: bCar and bCar: $PC_{71}BM$ thin films exposed to continuous irradiation under 1 sun for up to 24h.

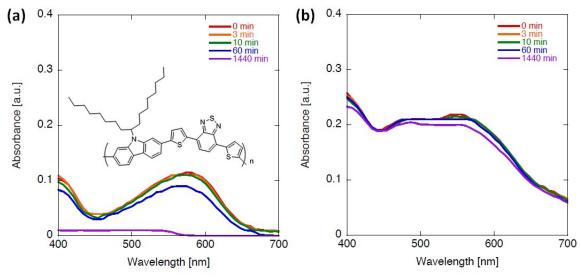


Figure S2: Absorption spectra of (a) PCDTBT and (b) PCDTBT:PC₇₁BM (1:4) thin films under continuous irradiation at 1 sun for up to 24h.

ARTICLE Journal Name

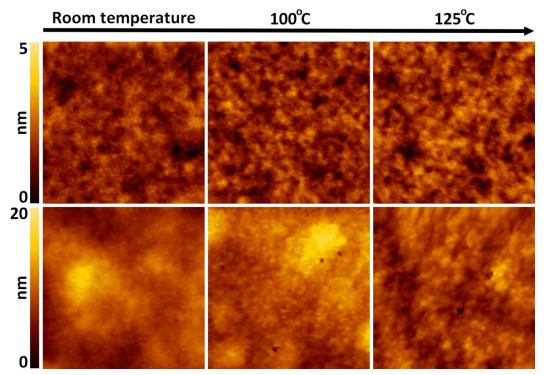


Figure S3: AFM images of (top) bCar:PC₇₁BM and (bottom) PCDTBT:PC₇₁BM active layers annealed at increasing temperatures.

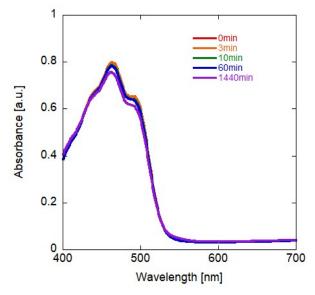


Figure S4: Absorption spectra of encapsulated bCar thin films under continuous irradiation at 1 sun for up to 24h.