Supporting Information

Methyl Made Noncentrosymmetric Stacking: A Promising Organic Single Crystal for Highly Efficient Terahertz-wave Generation

Jingkai Shi, Yixin He, Fei Liang, Xinyuan Zhang,* Degang Xu, Jiyong Yao, Guochun Zhang, Zhanggui Hu, Jianquan Yao, and Yicheng Wu

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.

Email: xyzhang@email.tjut.edu.cn

^bThe Institute of Laser & Optoelectronics, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.

^cKey Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China.

^dState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

^eKey Laboratory of Functional Crystals and Laser Technology, Beijing Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. 1. Supplementary figures.

Figure S1. OHI-T single crystal grown from methanol solvent.

Figure S2. Schematic diagram of the experimental setup for THz wave output.

Figure S3. Hirsfield surfaces of (a) OHI-CBS and (b) OHI-T.

Figure S4. Simulated (black), experimental (red) PXRD patterns of OHI-CBS.

Figure S5. TG and DTA curves of OHI-CBS crystals.

Figure S6. UV-vis spectra of OHI-T in acetonitrile.

2. Supplementary tables.

Table S1.	Comparison	of	mentioned	organic NLO	crystals.
		C	. 1		

Series	Crystal Name	Chemical Structure	Space Group	NLO Coefficients/ SHG Intensity	Cut-off Wavelengths	THz-wave Generation	Ref.
Pyridinium-based	DAST	N-CH ₃ SO ₃ -	Cc	$d_{11} = 210 \text{ pm/V}$ at 1.9 μm	680 nm	DFG: 0.3-19.6 THz	8, 9, 46
	DSTMS	N-CH ₃ N ⁺ -CH ₃	Сс	$d_{11} = 214 \text{ pm/V}$ at 1.9 μm	-	DFG: 0.88-19.27 THz	9, 47
Isophorone-based	OH1		Pna2 ₁	$d_{33} = 120 \text{ pm/V}$ at 1.9 μm	640 nm	DFG: 0.02 - 20 THz	10, 11, 45

OHQ-N2S	HO	Pn	Comparable to 490 nm DAST at 1253 nm	OR: ~ 6 THz	19
 OHQ-TFO	HO HO F_3C G G G G G G G G G G	Pc	2.3×OHQ-T at 610 nm 1140 nm	OR: ~ 8 THz	13

Pn

но Benzothiazolium-HMB-TMS based

Comparable to DAST at 1250 nm	580 nm	OR: ~ 5.3 THz	22
-------------------------------	--------	---------------	----

	РМВ-Т	HOH ₂ C	Comparable to 680 nm DAST at 1800 nm	OR: ~ 8.0 THz	23
	HDB-T	HO HO H ₃ C SO_3 $P2_1$	1.5×OH1 at 2.09 μm -	DFG: 0.1-20 THz	24
Indolium-based	EHPSI- 4NBS	$\stackrel{\text{HO}}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} Pn$		OR: ~3.8 THz	32
	OHI-T	HO	0.7× OH1 at 2.09 μm 504 nm	DFG: 0.1- 20 THz	This work

