Porous and Air Gap Elastomeric Dielectric Layer for Wearable Capacitive Pressure Sensor with High Sensitivity and Wide Detection Range

Wei Li, a,† Xin Jin, b,† Yide Zheng, a Xudong Chang, a Wenyu Wang, a,† Tong Lin, c Fan Zheng, d Obiora Onyilagh, d Zhengtao Zhu, d

a. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
b. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
c. Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
d. Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, United States.

† Both authors contributed equally to the manuscript.
*Corresponding authors: wwy-322@126.com; zhengtao.zhu@sdsmt.edu

Figure S1. Preparation of the agp-PDMS.
Figure S2. Histogram of the diameters of the PPy particles deposited on filter paper by vapor polymerization.

Figure S3. FT-IR spectra of the filter paper and the PPy/filter paper.
Figure S4. Pore size distribution of PDMS-h.

Figure S5. (a) Schematic of the capacitive sensor testing setup. (b) Comparison of the sensors based on PDMS-h-A66 under small pressure using PPy filter paper or copper tape as electrode contacts. (c) The relative capacitance change $\Delta C/C_0$ as a function of applied pressure for devices based on solid PDMS, PDMS-l (30.4% porosity), PDMS-l-A22 (array of 2×2 holes), PDMS-l-A44 (array of 4×4 holes), PDMS-l-A66 (array of 6×6 holes), and PDMS-h (61.2% porosity).

Figure S6. The curve of stress-compressive strain of applied pressure at small (5~1 kPa), intermediate (1~400 kPa), and large pressure ranges (400~1000 kPa), respectively.