Supporting Information

Crystal Structure and Luminescence Properties of Lead-Free Metal Halides: $(C_6H_5CH_2NH_3)_3MBr_6$ (M = Bi and Sb)

Da Chen[†], Fulong Dai[†], Shiqiang Hao[‡], Guojun Zhou[†], Quanlin Liu[†], Christopher Wolverton[‡], Jing Zhao^{*,†}, and Zhiguo Xia^{*,†,⊥}

[†] The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

[‡] Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

[⊥] State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China.

*Corresponding Author : E-mail: jingzhao@ustb.edu.cn; xiazg@ustb.edu.cn

Label	х	у	Z	Occupancy	${\rm U_{eq}}^{*}$
Bi(1)	6391(1)	4986(1)	1470(1)	1	65(1)
Br(1)	7997(1)	4257(2)	1017(1)	1	85(1)
Br(2)	6737(1)	2406(2)	2242(1)	1	86(1)
Br(3)	5536(1)	2786(2)	656(1)	1	88(1)
Br(4)	6022(1)	7709(2)	695(1)	1	81(1)
Br(5)	7070(1)	7436(2)	2274(1)	1	78(1)
Br(6)	4705(1)	5427(2)	1774(1)	1	91(1)
N(1)	14978(8)	9572(13)	1784(5)	1	118(4)
H(1A)	15300	9764	1523	1	142
H(1B)	14865	8506	1796	1	142
H (1C)	15271	9895	2108	1	142
C(1)	14208(9)	10415(16)	1668(6)	1	99(4)
H(1D)	14344	11530	1577	1	119
H(1E)	13950	10459	2002	1	119
C(2)	13524(8)	9771(11)	1213(5)	1	79(3)
C(3)	12668(9)	9521(15)	1329(5)	1	94(4)
C(4)	12008(9)	8975(14)	911(5)	1	104(4)
H(4)	11443	8813	986	1	124
C(5)	12184(8)	8672(12)	390(5)	1	90(3)
H(5)	11740	8290	117	1	108
C(6)	13015(8)	8932(11)	269(4)	1	80(3)
C(7)	13693(8)	9534(12)	674(5)	1	80(3)
N(2)	13487(8)	14974(11)	383(5)	1	100(3)
H(2A)	13423	15865	581	1	120
H(2B)	13304	15185	28	1	120
H (2C)	14051	14685	435	1	120
C(8)	12961(9)	13630(15)	560(6)	1	107(4)
H(8A)	13332	13008	844	1	128
H(8B)	12789	12905	248	1	128
C(9)	12144(8)	14135(13)	778(5)	1	85(3)
C(10)	11348(9)	14010(20)	467(6)	1	117(5)
H(10)	11297	13644	105	1	141
C(11)	10607(10)	14411(16)	679(6)	1	117(5)

Table S1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters

S2

C(12)	10669(11)	14960(13)	1212(7)	1	123(5)
H(12)	10165	15236	1353	1	147
C(13)	11491(9)	15098(14)	1537(7)	1	115(6)
H(13)	11553	15463	1899	1	138
C(14)	12222(8)	14672(15)	1302(6)	1	96(4)
H(14)	12779	14760	1513	1	115
N(3)	7677(6)	10103(10)	1330(4)	1	85(3)
H(3A)	7173	9961	1100	1	102
H(3B)	7811	11163	1351	1	102
H (3C)	7619	9736	1663	1	102
C(15)	8365(7)	9215(15)	1133(4)	1	86(3)
H(15A)	8420	9615	769	1	103
H(15B)	8204	8068	1098	1	103
C(16)	9258(7)	9372(13)	1510(4)	1	81(3)
C(17)	9862(8)	10650(15)	1433(5)	1	97(4)
H(17)	9719	11395	1147	1	116
C(18)	10644(8)	10772(17)	1779(7)	1	110(4)
H(18)	11046	11579	1725	1	132
C(19)	10838(10)	9670(16)	2217(6)	1	105(4)
H(19)	11367	9759	2459	1	126
C(20)	10273(9)	8501(18)	2290(6)	1	111(4)
H(20)	10413	7785	2585	1	134
C(21)	9478(8)	8316(15)	1939(5)	1	101(4)
H(21)	9098	7474	1995	1	122

 $^{*}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		1				
Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Bi(1)	65(1)	63(1)	68(1)	-1(1)	14(1)	-3(1)
Br(1)	71(1)	80(1)	109(1)	2(1)	29(1)	2(1)
Br(2)	110(1)	72(1)	78(1)	-1(1)	17(1)	8(1)
Br(3)	84(1)	96(1)	85(1)	-16(1)	18(1)	-28(1)
Br(4)	89(1)	75(1)	75(1)	8(1)	4(1)	5(1)
Br(5)	87(1)	73(1)	72(1)	-7(1)	6(1)	-6(1)
Br(6)	70(1)	108(1)	99(1)	-2(1)	27(1)	-18(1)
N(1)	103(8)	95(6)	144(9)	18(6)	-18(7)	-46(6)
C(1)	90(8)	91(8)	118(9)	3(7)	22(7)	-13(7)
C(2)	83(7)	63(6)	91(7)	13(5)	11(6)	6(5)
C(3)	109(9)	97(7)	82(7)	-14(7)	36(6)	-1(6)
C(4)	82(7)	132(11)	97(8)	-12(8)	16(6)	-1(8)
C(5)	88(8)	88(7)	88(7)	-5(6)	-2(6)	2(6)
C(6)	86(7)	71(6)	83(6)	15(5)	16(5)	-4(5)
C(7)	105(8)	55(5)	82(7)	-1(5)	20(6)	10(5)
N(2)	109(7)	89(7)	110(7)	20(5)	43(6)	20(5)
C(8)	125(8)	77(7)	127(9)	4(7)	45(7)	8(7)
C(9)	98(7)	71(6)	87(7)	1(6)	22(6)	10(6)
C(10)	89(9)	160(13)	100(9)	-2(9)	6(7)	8(9)
C(11)	102(10)	141(11)	100(9)	-4(9)	-9(8)	30(9)
C(12)	113(10)	122(12)	142(12)	26(8)	47(9)	30(8)
C(13)	86(9)	128(13)	130(12)	-14(8)	15(9)	-15(8)
C(14)	65(7)	118(9)	103(9)	-12(6)	4(6)	7(7)
N(3)	68(5)	85(6)	99(6)	-7(4)	7(5)	1(5)
C(15)	88(7)	86(7)	84(7)	-3(6)	15(6)	-8(6)
C(16)	70(6)	72(6)	103(7)	1(5)	18(6)	-13(6)
C(17)	84(7)	82(7)	129(9)	1(6)	31(7)	3(7)
C(18)	74(7)	88(8)	168(12)	2(7)	23(8)	-12(9)
C(19)	89(8)	93(8)	126(11)	14(7)	0(8)	-15(7)
C(20)	95(9)	114(10)	123(10)	2(8)	11(8)	38(8)
C(21)	92(8)	102(8)	111(8)	-8(7)	20(7)	24(7)

Table S2. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for **1** at 100(2) K with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12}]$.

Label	Distances
Bi(1)-Br(2)	2.8284(11)
Bi(1)-Br(6)	2.8465(12)
Bi(1)-Br(3)	2.8480(11)
Bi(1)-Br(5)	2.8866(10)
Bi(1)-Br(4)	2.9246(11)
Bi(1)-Br(1)	2.9408(11)
N(1)-C(1)	1.362(16)
C(1)-C(2)	1.502(17)
C(2)-C(7)	1.407(16)
C(2)-C(3)	1.411(17)
C(3)-C(4)	1.395(17)
C(4)-C(5)	1.377(16)
C(5)-C(6)	1.379(16)
C(6)-C(7)	1.408(15)
N(2)-C(8)	1.473(16)
C(8)-C(9)	1.508(17)
C(9)-C(10)	1.339(17)
C(9)-C(14)	1.348(17)
C(10)-C(11)	1.37(2)
C(11)-C(12)	1.38(2)
C(12)-C(13)	1.39(2)
C(13)-C(14)	1.392(19)
N(3)-C(15)	1.436(14)
C(15)-C(16)	1.534(15)
C(16)-C(21)	1.361(16)

Table S3. Bond lengths [Å] for **1** at 100(2) K with estimated standard deviations in parentheses.

C(16)-C(17)	1.433(16)
C(17)-C(18)	1.360(18)
C(18)-C(19)	1.40(2)
C(19)-C(20)	1.326(19)
C(20)-C(21)	1.386(17)

Label	Distances
Br(2)-Bi(1)-Br(6)	89.78(4)
Br(2)-Bi(1)-Br(3)	90.87(4)
Br(6)-Bi(1)-Br(3)	85.88(4)
Br(2)-Bi(1)-Br(5)	92.91(3)
Br(6)-Bi(1)-Br(5)	88.57(3)
Br(3)-Bi(1)-Br(5)	173.28(4)
Br(2)-Bi(1)-Br(4)	178.50(3)
Br(6)-Bi(1)-Br(4)	89.28(4)
Br(3)-Bi(1)-Br(4)	90.24(3)
Br(5)-Bi(1)-Br(4)	85.90(3)
Br(2)-Bi(1)-Br(1)	91.55(4)
Br(6)-Bi(1)-Br(1)	171.55(4)
Br(3)-Bi(1)-Br(1)	85.75(3)
Br(5)-Bi(1)-Br(1)	99.69(3)
Br(4)-Bi(1)-Br(1)	89.54(3)
N(1)-C(1)-C(2)	117.3(11)
C(7)-C(2)-C(3)	119.8(11)
C(7)-C(2)-C(1)	122.3(11)
C(3)-C(2)-C(1)	117.6(11)
C(4)-C(3)-C(2)	119.3(11)
C(5)-C(4)-C(3)	120.8(12)
C(4)-C(5)-C(6)	120.5(11)
C(5)-C(6)-C(7)	120.6(10)
C(2)-C(7)-C(6)	118.9(11)
N(2)-C(8)-C(9)	115.7(10)

Table S4. Bond angles [°] for **1** at 100(2) K with estimated standard deviations in parentheses.

C(10)-C(9)-C(14)	120.0(13)
C(10)-C(9)-C(8)	121.0(12)
C(14)-C(9)-C(8)	118.9(11)
C(9)-C(10)-C(11)	120.4(13)
C(10)-C(11)-C(12)	120.7(14)
C(11)-C(12)-C(13)	119.2(15)
C(12)-C(13)-C(14)	117.8(15)
C(9)-C(14)-C(13)	121.9(12)
N(3)-C(15)-C(16)	113.1(9)
C(21)-C(16)-C(17)	118.7(10)
C(21)-C(16)-C(15)	120.0(10)
C(17)-C(16)-C(15)	121.2(10)
C(18)-C(17)-C(16)	119.9(12)
C(17)-C(18)-C(19)	119.3(13)
C(20)-C(19)-C(18)	120.5(13)
C(19)-C(20)-C(21)	121.9(13)
C(16)-C(21)-C(20)	119.7(12)

Label	Х	у	Z	Occupancy	U _{eq} *
Sb(1)	6369(1)	5031(1)	6476(1)	1	27(1)
Br(1)	7050(1)	2584(1)	7273(1)	1	38(1)
Br(2)	5985(1)	2336(1)	5694(1)	1	40(1)
Br(3)	5536(1)	7220(1)	5682(1)	1	44(1)
Br(4)	7985(1)	5769(1)	6018(1)	1	42(1)
Br(5)	6711(1)	7550(1)	7240(1)	1	45(1)
Br(6)	4734(1)	4603(1)	6774(1)	1	48(1)
N(1)	3442(2)	5031(4)	5328(2)	1	53(1)
H(1A)	3089.8	4569.4	5037.87	1	64
H(1B)	3593.17	4274.93	5594.27	1	64
H (1C)	3931.79	5420.45	5219.39	1	64
C(1)	2964(3)	6405(5)	5547(2)	1	59(2)
H(1D)	2781.02	7197.29	5248.92	1	71
H(1E)	3373.19	6967.43	5838.47	1	71
C(2)	2150(2)	5872(4)	5782(2)	1	42(1)
C(3)	1338(3)	6053(6)	5456(2)	1	65(2)
H(3)	1278.3	6457.88	5093.11	1	78
C(4)	540(3)	5570(6)	5706(2)	1	75(2)
H(4)	-34.47	5656.37	5501.38	1	90
C(5)	681(3)	5017(6)	6227(2)	1	69(2)
H(5)	194.29	4712.11	6388.11	1	83
C(6)	1498(3)	4883(6)	6528(2)	1	66(2)
H(6)	1568.67	4490.33	6893.02	1	80
C(7)	2220(3)	5308(5)	6312(2)	1	54(1)
H(7)	2782.3	5211.47	6531.82	1	65
N(2)	5021(2)	433(5)	6755(2)	1	73(2)
H(2A)	5240.04	479.44	6439.1	1	88
H(2B)	5407.18	-83.93	7015.88	1	88
H (2C)	4927.98	1456.78	6869.24	1	88
C(8)	4197(3)	-455(5)	6661(2)	1	53(1)
H(8A)	3957.5	-466.25	7005.2	1	64
H(8B)	4317.01	-1595.18	6569.92	1	64
C(9)	3500(2)	232(4)	6204(2)	1	35(1)

Table S5. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters

C(10)	3659(2)	520(4)	5667(2)	1	38(1)
H(10)	4225.47	346.85	5584.71	1	46
C(11)	2977(2)	1064(4)	5253(2)	1	42(1)
H(11)	3088.1	1246.86	4893.8	1	50
C(12)	2140(3)	1335(5)	5370(2)	1	48(1)
H(12)	1684.18	1706.72	5091.77	1	58
C(13)	1979(3)	1051(5)	5903(2)	1	56(1)
H(13)	1412.21	1231.48	5985.05	1	67
C(14)	2656(2)	499(5)	6318(2)	1	47(1)
H(14)	2540.38	305.76	6675.36	1	57
N(3)	7649(2)	-116(3)	6330(2)	1	43(1)
H(3A)	7127.45	85.43	6110.67	1	51
H(3B)	7620.29	186.95	6678.14	1	51
H (3C)	7770.68	-1194.29	6321.68	1	51
C(15)	8363(2)	844(5)	6126(2)	1	45(1)
H(15A)	8199.77	2007.58	6099.99	1	54
H(15B)	8416.93	463.66	5754.25	1	54
C(16)	9243(2)	654(4)	6505(2)	1	39(1)
C(17)	9470(3)	1715(5)	6950(2)	1	56(2)
H(17)	9077.85	2550.83	7012.9	1	68
C(18)	10282(3)	1540(6)	7307(2)	1	65(2)
H(18)	10427.87	2253.3	7610.05	1	78
C(19)	10864(3)	338(5)	7217(2)	1	56(2)
H(19)	11410.86	240.24	7454.25	1	67
C(20)	10645(3)	-726(5)	6779(2)	1	60(2)
H(20)	11040.71	-1560.7	6720.98	1	72
C(21)	9840(3)	-571(5)	6422(2)	1	50(1)
H(21)	9698.74	-1296.89	6122.7	1	60

 $^{*}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		1				
Label	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Sb(1)	25(1)	27(1)	29(1)	1(1)	7(1)	3(1)
Br(1)	42(1)	37(1)	33(1)	6(1)	1(1)	3(1)
Br(2)	46(1)	39(1)	34(1)	-6(1)	-1(1)	-2(1)
Br(3)	37(1)	54(1)	42(1)	11(1)	10(1)	21(1)
Br(4)	30(1)	39(1)	59(1)	-1(1)	13(1)	-2(1)
Br(5)	62(1)	35(1)	39(1)	0(1)	8(1)	-7(1)
Br(6)	31(1)	63(1)	54(1)	3(1)	17(1)	16(1)
N(1)	52(2)	48(2)	65(2)	-7(2)	25(2)	-7(2)
C(1)	68(3)	36(2)	78(3)	-6(2)	29(2)	-6(2)
C(2)	42(2)	34(2)	50(2)	0(2)	8(2)	-8(2)
C(3)	65(3)	79(3)	49(2)	10(3)	4(2)	-9(2)
C(4)	39(2)	100(4)	78(3)	7(2)	-9(2)	-35(3)
C(5)	53(3)	82(3)	77(3)	-4(2)	23(2)	-23(3)
C(6)	56(3)	84(3)	62(3)	10(3)	20(2)	5(3)
C(7)	40(2)	67(3)	55(3)	4(2)	5(2)	-4(2)
N(2)	52(2)	73(3)	84(3)	-19(2)	-17(2)	37(2)
C(8)	47(2)	55(2)	53(2)	-14(2)	-2(2)	11(2)
C(9)	40(2)	32(2)	33(2)	-5(2)	6(2)	-4(2)
C(10)	37(2)	36(2)	44(2)	-4(2)	14(2)	-1(2)
C(11)	55(2)	40(2)	32(2)	-11(2)	10(2)	-3(2)
C(12)	46(2)	46(2)	48(2)	0(2)	-4(2)	0(2)
C(13)	42(2)	74(3)	54(2)	7(2)	15(2)	-4(2)
C(14)	48(2)	63(2)	34(2)	0(2)	15(2)	-2(2)
N(3)	38(2)	40(2)	49(2)	3(2)	5(2)	-3(2)
C(15)	43(2)	43(2)	48(2)	-2(2)	7(2)	6(2)
C(16)	36(2)	34(2)	48(2)	-2(2)	10(2)	4(2)
C(17)	43(2)	59(3)	68(3)	8(2)	8(2)	-18(2)
C(18)	45(2)	81(3)	67(3)	-4(2)	4(2)	-24(2)
C(19)	33(2)	64(3)	69(3)	-1(2)	5(2)	13(2)
C(20)	39(2)	48(2)	95(3)	9(2)	18(2)	4(2)
C(21)	45(2)	43(2)	65(3)	-3(2)	15(2)	-10(2)

Table S6. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **2** at 100(2) K with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*b}U_{12}]$.

Label	Distances
Sb(1)-Br(1)	2.8324(4)
Sb(1)-Br(2)	2.8784(4)
Sb(1)-Br(3)	2.7563(4)
Sb(1)-Br(4)	2.9319(4)
Sb(1)-Br(5)	2.7401(4)
Sb(1)-Br(6)	2.7323(4)
N(1)-C(1)	1.475(5)
C(1)-C(2)	1.516(5)
C(2)-C(3)	1.355(5)
C(2)-C(7)	1.352(5)
C(3)-C(4)	1.501(6)
C(4)-C(5)	1.325(7)
C(5)-C(6)	1.334(6)
C(6)-C(7)	1.343(5)
N(2)-C(8)	1.427(5)
C(8)-C(9)	1.503(5)
C(9)-C(10)	1.386(5)
C(9)-C(14)	1.378(5)
C(10)-C(11)	1.385(5)
C(11)-C(12)	1.370(5)
C(12)-C(13)	1.380(5)
C(13)-C(14)	1.383(5)
N(3)-C(15)	1.488(4)
C(15)-C(16)	1.496(5)
C(16)-C(17)	1.375(5)

Table S7. Bond lengths [Å] for **2** at 100(2) K with estimated standard deviations in parentheses.

C(16)-C(21)	1.382(5)
C(17)-C(18)	1.388(6)
C(18)-C(19)	1.356(5)
C(19)-C(20)	1.363(6)
C(20)-C(21)	1.379(5)

Label	Distances
Br(1)-Sb(1)-Br(2)	86.201(11)
Br(1)-Sb(1)-Br(4)	99.774(12)
Br(2)-Sb(1)-Br(4)	89.442(11)
Br(3)-Sb(1)-Br(1)	173.767(13)
Br(3)-Sb(1)-Br(2)	90.299(12)
Br(3)-Sb(1)-Br(4)	85.332(12)
Br(5)-Sb(1)-Br(1)	92.801(12)
Br(5)-Sb(1)-Br(2)	178.407(13)
Br(5)-Sb(1)-Br(3)	90.581(13)
Br(5)-Sb(1)-Br(4)	91.953(12)
Br(6)-Sb(1)-Br(1)	88.425(12)
Br(6)-Sb(1)-Br(2)	89.393(13)
Br(6)-Sb(1)-Br(3)	86.380(12)
Br(6)-Sb(1)-Br(4)	171.623(13)
Br(6)-Sb(1)-Br(5)	89.338(13)
N(1)-C(1)-C(2)	114.2(3)
C(3)-C(2)-C(1)	118.1(4)
C(7)-C(2)-C(1)	121.3(4)
C(7)-C(2)-C(3)	120.5(4)
C(2)-C(3)-C(4)	117.1(4)
C(5)-C(4)-C(3)	117.7(4)
C(4)-C(5)-C(6)	122.3(4)
C(5)-C(6)-C(7)	120.9(4)
C(6)-C(7)-C(2)	121.6(4)
N(2)-C(8)-C(9)	114.9(3)

Table S8. Bond angles [°] for **2** at 100(2) K with estimated standard deviations in parentheses.

C(10)-C(9)-C(8)	122.8(3)
C(14)-C(9)-C(8)	118.2(3)
C(14)-C(9)-C(10)	118.9(3)
C(9)-C(10)-C(11)	120.4(3)
C(12)-C(11)-C(10)	120.4(3)
C(11)-C(12)-C(13)	119.4(4)
C(12)-C(13)-C(14)	120.4(4)
C(9)-C(14)-C(13)	120.5(3)
N(3)-C(15)-C(16)	111.7(3)
C(17)-C(16)-C(15)	119.8(3)
C(17)-C(16)-C(21)	118.5(3)
C(21)-C(16)-C(15)	121.7(3)
C(16)-C(17)-C(18)	120.2(4)
C(19)-C(18)-C(17)	120.5(4)
C(18)-C(19)-C(20)	119.9(4)
C(19)-C(20)-C(21)	120.3(4)
C(20)-C(21)-C(16)	120.6(4)

EDS 500 µm			200 µm		
ii	Bi	Br	iv	Sb	Br
Atom %	2.7	15.2	Atom %	15.2	84.7
Ration	4	E.C.	Pation	1	56

Figure S1. The SEM picture (i), (iii) and EDS results (ii) and (iv).

Figure S2. N–H···Br hydrogen bonding (dotted lines) of **1** (a) and **2** (b)

Figure S3. XRD analysis of 1 after the first step decomposition.

Figure S4. PLE and PL spectra of PMABr at room temperature.

Figure S5. PL spectra excited by different excitation wavelengths for compounds 1 (a) and 2 (b).

Figure S6. PL decay curves of compound 1 and 2 polycrystalline powder at room temperature.

Figure S7. (a-b) temperature-dependent steady-state PL spectra of **1** and **2**. (c-d) Fitting of the FWHM for compound **1** and **2** as a function of temperature. (e-f) Temperature-dependent normalized steady-state PL spectra of **1** and **2**. (g-h) PL spectra of **1** and **2** at 350 K and 80 K.

Figure S8. Comparison of PL spectra intensity of 1 and 2 under the same test conditions.