Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## ALD-based hydrothermal facile synthesis of dense WO<sub>3</sub>@TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> nanodendrite array with enhanced photoelectrochemical properties

Kai-Ping Yuan<sup>ab</sup>, Li-Yuan Zhu<sup>a</sup>, Qi Cao<sup>c</sup>, Hong-Ping Ma<sup>a</sup>, Jia-Jia Tao<sup>a</sup>, Wei Huang<sup>a</sup>, Hong-Liang Lu<sup>\*,a</sup>

<sup>a</sup> State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China

<sup>b</sup> Department of Electronic Engineering, Fudan University, Shanghai 200433, China

<sup>c</sup> Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

E-mail: <u>honglianglu@fudan.edu.cn</u>



Figure S1. The digital photo of electrochemical measurement set-up



Figure S2. SEM images of as-obtained (a) pure WO<sub>3</sub> nanosheets and (b)  $WO_3@TiO_2(11 \text{ nm})$  core shell nanosheets array. Inset in (a) is the digital photograph of pure WO<sub>3</sub> nanosheets array; inset in (b) is the high-magnification SEM image of  $WO_3@TiO_2(11 \text{ nm})$  core shell nanosheets array.



Figure S3. Digital photographes of as-prepared (a)  $WO_3@TiO_2(11 \text{ nm})$  core-shell nanosheets array and (b)  $WO_3@TiO_2(11 \text{ nm})$ -Fe<sub>2</sub>O<sub>3</sub> nanotrees array.



Figure S4. XPS full spectra of the different samples including pure WO<sub>3</sub> nanosheets arrays, WO<sub>3</sub>@TiO<sub>2</sub>(11 nm) core-shell nanosheets, and WO<sub>3</sub>@TiO<sub>2</sub>(11 nm)-Fe<sub>2</sub>O<sub>3</sub> nanotrees arrays.



Figure S5. (a) XPS W 4f spectrum of WO<sub>3</sub> nanosheets; (b) XPS Ti 2p spectrum of

WO<sub>3</sub>@TiO<sub>2</sub> (11 nm); (c) XPS Fe 2pspectrum and (d)XPS O 1s spectrum of

WO<sub>3</sub>@TiO<sub>2</sub> (11 nm)-Fe<sub>2</sub>O<sub>3</sub>.



Figure S6. (a-c) Low-magnification SEM images of the obtained  $WO_3@TiO_2$  coreshell nanosheets sample (a)  $WO_3@TiO_2(5 \text{ nm})$ , (b)  $WO_3@TiO_2$  (11 nm) and (c)  $WO_3@TiO_2(30 \text{ nm})$ . Inset in panel a-c are corresponding high-magnification SEM images of the obtained  $WO_3@TiO_2$  core-shell nanosheets.



**Figure S7.** SEM images of  $WO_3@TiO_2$ -Fe<sub>2</sub>O<sub>3</sub> obtained after 3 h hydrothermal reaction with different thicknesses of the TiO<sub>2</sub> ALD layer: (a-b) 5 nm; (c-d) 11 nm; (e-f) 30 nm.



**Figure S8.** (a) The dark current densities of the the different samples including pure WO<sub>3</sub> nanosheets arrays, WO<sub>3</sub>@TiO<sub>2</sub>(11 nm) core-shell nanosheets and WO<sub>3</sub>@TiO<sub>2</sub>(11 nm)-Fe<sub>2</sub>O<sub>3</sub> nanotrees arrays; (b) chronoamperometric I-t curves for WO<sub>3</sub>@TiO<sub>2</sub>(11 nm)-Fe<sub>2</sub>O<sub>3</sub> nanotrees arrays photoanode collected at 1.23 V vs. RHE with repeated on-off cycles.



Figure S9. The XPS valence band spectra of the (a) WO<sub>3</sub>@TiO<sub>2</sub> (11 nm)-Fe<sub>2</sub>O<sub>3</sub>., (b)

WO<sub>3</sub>@TiO<sub>2</sub> (11 nm) and (c) WO<sub>3</sub> nanosheets.