Supporting Information

Inkjet printing a small-molecule binary emitting layer for organic light-emitting diodes

Lan Mu^a, Mengjiao He^a, Congbiao Jiang^a, Juanhong Wang^a, Chaohuang Mai^a, XiaoLan Huang^a, Hua

Zheng^b, Jian Wang^a, Xu-Hui Zhu^{*a}, Junbiao Peng^{*a}

^aState Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic

Materials and Devices, South China University of Technology, Guangzhou 510640, China

^bSchool of Electrical Engineering and Intelligentization, Dongguan University of Technology,

Dongguan, Guangdong 523808, China

Figure S1. The UV-Vis spectroscopy on the TFB layer, subject to rinsing by the *o*-dichlorobenzene (*o*-DCB) solvent.

Experiment: the TFB film was treated by spin-casting the solvent *o*-DCB at 3000 rpm for 30 s. The influence of solvent washing to the TFB layer was confirmed by UV-Vis spectroscopy. The thickness of

TFB layer without solvent treatment was measured by Dektak 150 surface profiler (Bruker Corp.). **Figure S2.** ¹H NMR of the host material *t*-BuCz-*m*-NPBI (CDCl₃, 500 MHz)

Figure S3. Mass spectroscopy of *t*-BuCz-*m*-NPBI (APCI)

Figure S4. Microanalysis data of *t*-BuCz-*m*-NPBI, provided by the Instrumental Analysis & Research

Center, Sun Yat-Sen University, Guangzhou, China.

o. Name Weight [mg] C [%] H [%] N [%] C/N ratio C/H ratio Date Time 70 HML 1.8210 86.63 7.329 5.92 14.6250 11.8195 19.04.2017 19:00	「「素酒	含量测定 ubo 元表分析仪								
port weight [mg] C [%] H [%] N [%] C/N ratio C/H ratio Date Time 70 HML 1.8210 86.63 7.329 5.92 14.6250 11.8195 19.04.2017 19.00										
o. Name Weight [mg] C [%] H [%] N [%] C/N ratio C/H ratio Date Time 70 HML 18210 8663 7.329 5.92 14.6250 11.8195 19.04.2017 19:00	epor	t								
18210 86.63 7.329 5.92 14.6250 11.8195 19.04.2017 19:00	No.	Name	Weight [mg]	C [%]	H [%]	N [%]	C/N ratio	C/H ratio	Date	Time
	70	HMJ	1.8210	86.63	7.329	5.92	14.6250	11.8195	19.04.20	17 19:00

Figure S5. Cyclic voltammograms of *t*-BuCz-*m*-NPBI in nitrogen-saturated CH₂Cl₂/CH₃CN (4:1 v/v) containing 0.1 M *n*-Bu₄NPF₆.

Figure S6. Flight stability of printing the host material *t*-**BuCz-***m***-NPBI** ink. The solvent: (a) *p*-xylene (*p*-xy), (b) cyclohexylbenzene (CHB), (c) 3,4-dimethyl anisole (DMA), (d) *o*-dichlorobenzene (*o*-DCB)

Solvents	b. р. (°С)	Saturated vapor pressure (kPa)	Surface tension (mN/m)	Viscosity (cP)	Contact angle [®]
<i>p</i> -xylene (<i>p</i> -xy)	138.3	0.928	27.8	0.63	4.5
3,4-dimethyl anisole (DMA)	203	0.043	30.2	1.56	9.4.
cyclohexylbenzene (CHB)	237	0.039	41.3	2.68	4.8
o-dichlorobenzene (o-DCB)	180	0.13	36.5	1.32	16.5

Table S1. Rheological properties of the solvents for inkjet printing^{**}

^a Meared on PVK substarte

* Cheng, N. Solvents Handbook. (Chemical Industry Press, 2007).

Figure S7. 3D morphology of the IJP *t*-**BuCz**-*m*-**NPBI** (a) and blend films *t*-**BuCz**-*m*-**NPBI**: 9wt% Ir(MDQ)₂(acac) (b) on the TFB/PEDOT/ITO substrate. Substrate temperature: 20 °C. Concentration: 30 mg/ml *t*-**BuCz**-*m*-**NPBI** or *t*-**BuCz**-*m*-**NPBI** : 9wt% Ir(MDQ)₂(acac) in *o*-DCB.

Figure S9. *J*-*V*-*L* (left) and *LE*-*J* (Right) of the OLEDs comprising the spin-cast EML and different HTLs (PVK or TFB). The solvent for the spin-cast EML is *p*-xylene: chlorobenzene (5:1 v/v). The substrates used for both inkjet printing and spin coating are the same.

Table S2. Summary of the OLED characteristics based on the spin-cast emitting layer.

Dovisor	V on	L _{max}	<i>LE</i> _{max}	@ 1000 cd/m ²		
Devices	(V)	(cd/m ²)	(cd/A)	<i>V</i> (V)	<i>LE</i> (cd/A)	
TFB	3.6	4048	3.63	6.6	2.41	
PVK	5.6	1774	1.84	9.8	0.91	