Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information for**

## A smart luminescent metal-organic framework-based logic system

## for simultaneous analysis of copper ions and hydrogen sulfide

Yufang Shu, Ji-Na Hao\*, Dechao Niu\* and Yongsheng Li

Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

E-mail: haona1220@126.com; dcniu@ecust.edu.cn.



Fig. S1 SEM images of Zr-pydc (a) and Zr-pydc-Eu (b).



Fig. S2 N 1s XPS spectra for Zr-pydc (black line) and Zr-pydc-Eu (red line).

| Elements                        | Zr   | Eu   |  |  |
|---------------------------------|------|------|--|--|
| Mass ratio / mg·L <sup>-1</sup> | 330  | 180  |  |  |
| Molar ratio                     | 3.62 | 1.18 |  |  |

Table S1 ICP-OES analysis for the Zr and Eu elements in the Zr-pydc-Eu



**Fig. S3** Thermogravimetric analysis of Zr-pydc and Zr-pydc-Eu. The gradual weight loss from 100 to 300 °C can be ascribed to the dehydration of the  $Zr_6O_4(OH)_4$  species and the units of MOFs turned into  $Zr_6O_6(pydc)_6$  in this phase. The structure of both the Zr-pydc and Zr-pydc-Eu in air is thermally stable up to 400 °C, above which a further weight loss is attributed to decomposition of the framework. The residues are their corresponding metallic oxideand when the temperature rises to 700 °C.



Fig. S4 Excitation ( $\lambda_{em}$  = 615 nm, black line) spectrum of Zr-pydc-Eu and emission spectra of Zr-pydc-Eu (red line) and Zr-pydc (blue dot line) under the excitation of 297 nm.



**Fig. S5** Emission spectra (a) and the corresponding intensities at 615 nm (b) of Zr-pydc-Eu after immersing in Hepes solutions (pH = 7.4) with different time (0 - 48h).



Fig. S6 Luminescence lifetimes of Zr-pydc-Eu at 615 nm in the absence and presence of different concentrations (20 and 40  $\mu$ M) of Cu<sup>2+</sup> under the excitation of 297 nm.



Fig. S7 PXRD patterns of Zr-pydc-Eu before and after detection of Cu<sup>2+</sup> and H<sub>2</sub>S.



Fig. S8 Emission spectra of Zr-pydc-Eu upon the addition of different cations (100  $\mu$ M,  $\lambda_{ex}$  = 297 nm).



Fig. S9 Luminescence spectra of Zr-pydc-Eu towards Cu<sup>2+</sup> (100  $\mu$ M) in the presence of other various cations (100  $\mu$ M,  $\lambda_{ex}$  = 297 nm).



**Fig. S10** Column diagram (a) of the normalized fluorescence intensity (threshold, 0.2) of the Zr-pydc-Eu<sup>3+</sup> at 615 nm toward Cu<sup>2+</sup> in the presence of other cations, and the corresponding truth table (b) of the logic operation with different cations inputs.



**Fig. S11** The emission responses of Cu<sup>2+</sup>(100  $\mu$ M)-assisted Zr-pydc-Eu to H<sub>2</sub>S and various biologically relevant interferents (A-P and I-X, 120  $\mu$ M,  $\lambda$  <sub>ex</sub> = 297 nm).



**Fig. S12** (a) The emission intensities of Cu<sup>2+</sup>-assisted Zr-pydc-Eu to NaHS and various biologically relevant interferents (I-X, 120  $\mu$ M,  $\lambda_{ex}$  = 297 nm). (b) Truth table of the logic Zr-pydc-Eu with Cu<sup>2+</sup> (100  $\mu$ M) and different components (I-X, 120  $\mu$ M) as inputs.



Fig. S13 Luminescence intensity changes of Zr-pydc-Eu at 615 nm as a function of time after successive addition of  $Cu^{2+}$  from 30 to 60  $\mu$ M.



Fig. S14 Luminescence intensity changes of Cu<sup>2+</sup>/Zr-pydc-Eu at 615 nm as a function of time after successive addition of NaHS from 20 to 60  $\mu$ M.

| No Methods |                        | Sustama                                                                                               | Analyte                    | LOD/  | Response | Assay                            | Pof  |  |
|------------|------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|-------|----------|----------------------------------|------|--|
|            |                        | Systems                                                                                               |                            | μM    | time/min | media                            | Rel. |  |
| 1          | Luminescence           | [Cd(L) <sub>2</sub> ]·(DMF) <sub>0.92</sub>                                                           | Single<br>Cu <sup>2+</sup> | 16.9  | -        | DMF                              | 18a  |  |
| 2          | Luminescence           | Cd-MOF-74                                                                                             | Single<br>Cu <sup>2+</sup> | 78.7  | -        | Water                            | 18b  |  |
| 3          | Luminescence           | $\{[Nd_2(NH_2-BDC)_3(DMF)_4]\}_n$                                                                     | Single<br>Cu <sup>2+</sup> | 24.95 | -        | DMF                              | 18c  |  |
| 4          | Luminescence           | NH <sub>2</sub> -MIL-101(AI)@ZIF-8                                                                    | Single<br>Cu <sup>2+</sup> | 0.17  | -        | Water                            | 18d  |  |
| 5          | Luminescence           | [Zn(OBA) <sub>2</sub> (PTD) <sub>2</sub> DMF <sub>2</sub> H <sub>2</sub> O]                           | Single<br>Cu <sup>2+</sup> | 4.43  | -        | DMF                              | 18e  |  |
| 6          | Luminescence           | Eu <sup>3+</sup> /Ag <sup>+</sup> @UiO-66-(COOH) <sub>2</sub>                                         | Single<br>H <sub>2</sub> S | 23.53 | 0.5      | Serum                            | 5a   |  |
| 7          | Luminescence           | Zr <sub>6</sub> O <sub>4</sub> (OH) <sub>4</sub> ((NDC-(NO <sub>2</sub> ) <sub>2</sub> ) <sub>6</sub> | Single<br>H <sub>2</sub> S | 20    | 55       | Blood<br>plasma,<br>living cells | 19a  |  |
| 8          | Luminescence           | UiO-66-(NO <sub>2</sub> ) <sub>2</sub>                                                                | Single<br>H <sub>2</sub> S | 14.14 | 40       | Blood<br>plasma,<br>living cells | 19b  |  |
| 9          | Luminescence           | Eu <sup>3+</sup> /Cu <sup>2+</sup> @UiO-66-<br>(COOH) <sub>2</sub>                                    | Single<br>H <sub>2</sub> S | 5.45  | 0.5      | Water                            | 19c  |  |
| 10         | Luminescence           | Tb³⁺@Cu1                                                                                              | Single<br>H <sub>2</sub> S | 1.2   | 2        | Water                            | 19d  |  |
| 11         | Luminescence           | Cy-N <sub>3</sub>                                                                                     | Single<br>H <sub>2</sub> S | 0.08  | 20       | Living cells                     | 19e  |  |
| 12         | Luminescence           | SF4                                                                                                   | Single<br>H <sub>2</sub> S | 0.125 | 60       | Living cells                     | 19f  |  |
| 13         | Luminescence           | PSS-PA-Cu NC aggregates                                                                               | Single<br>H <sub>2</sub> S | 0.65  | 30       | Water                            | 19g  |  |
| 14         | UV-vis<br>spectroscopy | Bare gold NPs                                                                                         | Single<br>H <sub>2</sub> S | 0.08  | 1        | Water                            | 19h  |  |
| 15 Lumine  |                        |                                                                                                       | Cu <sup>2+</sup>           | 0.09  | 1        | Water/<br>Serum                  | This |  |
|            | Lummescente            | 21-µyut-Lu                                                                                            | H <sub>2</sub> S           | 0.06  | 2        | Water/<br>Serum                  | work |  |

Table S2. Comparison of analysis performances of various systems for determination of  $Cu^{2+}$  and  $H_2S$ .



Fig. S15 Fluorescent responses of Zr-pydc-Eu to pretreated FBS spiked with different concentrations of Cu<sup>2+</sup>.



Fig. S16 Fluorescent responses of Cu<sup>2+</sup>(100  $\mu$ M)-assisted Zr-pydc-Eu to pretreated FBS spiked with different concentrations of NaHS.

| Table better better better be sumples by the Er pyde Ed | Table S3. Determination of | Cu <sup>2+</sup> in the | pretreated FBS sam | ples by th | e Zr-pydc-Eu. |
|---------------------------------------------------------|----------------------------|-------------------------|--------------------|------------|---------------|
|---------------------------------------------------------|----------------------------|-------------------------|--------------------|------------|---------------|

| Serum Samples | Spiked | Measured            | Bacovory (%) | P(D   0 / n - C) |  |
|---------------|--------|---------------------|--------------|------------------|--|
|               | (μM)   | (μM <i>, n</i> = 6) | Recovery (%) | K3D (%, 11 – 0)  |  |
| 1             | 5.0    | 5.21±0.10           | 104.20       | 1.92             |  |
| 2             | 50.0   | 46.37±1.22          | 92.74        | 2.63             |  |
| 3             | 100.0  | 103.0±1.42          | 103.00       | 1.38             |  |

Table S4. Determination of NaHS in the pretreated FBS samples by the Cu<sup>2+</sup>-assisted Zr-pydc-Eu.

| Serum Samples | Spiked | Measured            | Decevery (%) | P(D   0 = c)    |  |
|---------------|--------|---------------------|--------------|-----------------|--|
|               | (μM)   | (μM <i>, n</i> = 6) | Recovery (%) | RSD (%, 11 = 0) |  |
| 1             | 5.0    | $4.78 \pm 0.11$     | 95.60        | 2.30            |  |
| 2             | 60.0   | 63.54 ± 1.10        | 105.90       | 1.73            |  |
| 3             | 120.0  | 120.8 ± 1.35        | 100.67       | 1.12            |  |