Supporting Information

Impact of molecular structure on singlet and triplet exciton diffusion in phenanthroline

derivatives

Deepesh Rai¹, John S. Bangsund¹, Javier Garcia Barriocanal² and Russell J. Holmes¹

¹Department of Chemical Engineering and Materials Science, University of Minnesota,

Minneapolis, MN 55455

²Characterization Facility, University of Minnesota, Minneapolis, MN 55455

Layer	XRR Thickness (nm)	ρ (nm ⁻³)	σ _R (nm)	Ellipsometer Thickness (nm)	ρ (Lit.) (nm ⁻³)
Si		50	0-0.4		50 [1]
SiO ₂	1-3	22.0	1-3	1.5	20.7-22.5 ^[1]
BPhen	16.2	2.26	1.1	15.4	$2.27 \pm 0.02^{[2]}$
BPhenCl ₂	20.8	2.04	1.2	20.5	
BCP	16.1	1.87	1.2	15.8	1.87 ± 0.02 ^[2]

Table S1: XRR fit parameters for thin films of phenanthroline derivatives

X-ray reflectivity (XRR) is measured on a 20-nm-thick film of the active material deposited on a Si substrate using a PANalytical X'pert Pro instrument. The experimental data is simulated using GenX software to obtain thin film molecular density (ρ), surface roughness (σ_R) and film thickness.

Figure S1: X-ray reflectivity on 20-nm-thick films (on a Si substrate) of BPhen, BPhen-Cl₂ and BCP. Data analysis is performed using GenX software with film thickness, density and roughness as fitting parameters. The extracted film thicknesses are within 5% of the values extracted from ellipsometry. The film roughness obtained from the fit is about 1.2 nm which is in close agreement with roughness value (RMS < 0.7 nm) obtained using atomic force microscopy (AFM).

Figure S2: The simulated outcoupled photoluminescence efficiency ratio of FIrpic and PtOEP as a function of active layer thickness using Setfos 4.6 (Fluxim) software. The structure is simulated for FIrpic/active layer (x nm)/5 wt.% PtOEP, where the active layer is BPhen and its derivatives. The outcoupled photoluminescence efficiency ratios are same for all the three active layers due to similarity in optical constants.

Figure S3: (a) Representative photoluminescence from the triplet state of BPhen-Cl₂ collected for different delay times from the trigger of a N₂ laser pulse at a wavelength of $\lambda = 337$ nm. (b) A semi-log plot between integrated photoluminescence from triplet state and delay times for phenanthroline derivatives.

Figure S4: Atomic force micrographs of 30-nm-thick film of (a) BPhen (b) BPhen- Cl_2 and (c) BCP on a glass substrate. Atomic force microscopy was conducted using a Bruker Nanoscope V with a Multimode 8. Images were acquired in peak force quantitative nanomechanical (PF-QNM) mode, and AFM cantilevers were aluminum-coated n-type silicon with a nominal force constant of 0.6 N/m (HQ:NSC36/AL BS).

REFERENCES

- 1. Awaji; N., Sugita; Y., Nakanishi; T., Ohkubo; S., Takasaki; K., Komiya; S., High-precision x-ray reflectivity study of ultrathin SiO2 on Si, J. Vac. Sci. Technol, **1996**, A 14, 971.
- 2. Xiang, H. F.; Xu, Z. X.; Roy, V. A. L.; Che, C. M.; & Lai, P. T., Method for measurement of the density of thin films of small organic molecules, *Rev. Sci. Instrum.*, **2007**, 78, 034104.