Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Bright and efficient red emitting electroluminescent devices containing a ternary europium complex with greater than 6% external quantum efficiency

Rashid Ilmi,*^a Muhammad S. Khan*,^a Weidong Sun^b, José D. L. Dutra^c, Willyan F. Oliveira^c, Liang Zhou*,^b Wai-Yeung Wong*^d, Paul R. Raithby*^e

^aDepartment of Chemistry, Sultan Qaboos University, P. O. Box 36, Al Khod 123,

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.

^cPople Computational Chemistry Laboratory, Department of Chemistry, UFS, 49100-000 São

Cristóvão, Sergipe, Brazil

^dDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

^eDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Addresses and ORCID ID of corresponding authors:

Rashid Ilmi	: rashidilmi@gmail.com; 0000-0002-5165-5977
Muhammad S. Khan	: <u>msk@squ.edu.om;</u> 0000-0001-5606-6832
Liang Zhou	: <u>zhoul@ciac.ac.cn;</u> 0000-0002-2751-5974
Paul R. Raithby	: <u>p.r.raithby@bath.ac.uk;</u> 0000-0002-2944-0662
Wai-Yeung Wong	: wai-yeung.wong@polyu.edu.hk; 0000-0002-9949-7525

Supporting Information

Contents

1.	Synthesis of Binary hydrated complexes	. 4
1.1.	$[Eu(btfa)_3(H_2O)_2] \text{ and } [Eu(nta)_3(H_2O)_2] \dots$. 4
2.	Theoretical Judd–Ofelt (J-O) intensity parameters (Ω_{λ}) (λ = 2, 4 and 6)	. 4
3.	Theoretical Quantum Yield	. 6
4.	Full EL Device structures	.7
4.1	Single EML Device based on Eu-1	.7
4.2	Double EML Device based on Eu-1	.7
4.3	Single EML Device based on Eu-2	.7
4.4	Double EML Device based on Eu-2	. 8
Tabl	lo S1 Corrected amignion intensity relative to 5D	~ "

Fig. S1. Positive mode ESI-MS spectrum of Eu-1 complex in acetone solution......12

Fig. S2. FTI-R spectrum of solid **Eu-1** complex with its expansion from 2000 – 650 cm⁻¹. 12

Fig. S3. Positive mode ESI-MS spectrum of **Eu-2** complex in acetone solution......13

Fig. S4. FTI-R spectra of solid **Eu-2** complex with its expansion from 2000 – 650 cm⁻¹. . 13

Fig. S5. Geometries optimized at the RM1 level of theory for different structural possibilities considered for **Eu-1**. The values in the parentheses are the heat of formation for

each structure calculated with RM1. *Conformation of the starting structure (CSD CODE 1942486). 14

Fig. S7. Excitation spectra of the Eu-1 and Eu-2 complexes in DCM solution at RT...... 16

Fig. S12. Decay curve of **Eu-1** with fitted curve and observed luminescence lifetime in DCM at RT. 21

Fig. S13. Decay curve of **Eu-2** with fitted curve and observed luminescence lifetime in DCM at RT. 22

 Fig. S14.
 Normalized EL spectra of the double-EML devices 4, 5 and 6 of Eu-1 operating at 10 mA/cm².

 23

 Fig. S15.
 Normalized EL spectra of the double-EML devices 4, 5 and 6 of Eu-2 operating at 10 mA/cm².

Fig. S16. CIE 1931 chromaticity diagrams of single EML devices **1**, **2** and **3** of **Eu-2** with magnified view operating at 10 mA/cm²......25

Fig. S17.CIE 1931 chromaticity diagrams of single EML devices 4, 5 and 6 of Eu-1 withmagnified view operating at 10 mA/cm².26

1. Synthesis of Binary hydrated complexes

1.1. $[Eu(btfa)_3(H_2O)_2]$ and $[Eu(nta)_3(H_2O)_2]$

Binary hydrated $[Eu(btfa)_3(H_2O)_2]$ and $[Eu(nta)_3(H_2O)_2]$ complexes (**Chart S1**) were synthesized by the conventional method.¹ Briefly, EuCl₃.6H₂O (Eu- 2.39 g, 6.57 mmol) aqueous solution was added dropwise through a dropping funnel to a solution of sodium salt of β -diketone (2.0 g, 19.97 mmol). The precipitate formed was filtered, washed with a copious amount of deionized water and dried in vacuum over P₄O₁₀ and re-crystallized from DCM.

Chart S1: Chemical structures of binary hydrated [Eu(btfa)₃(H₂O)₂] and [Eu(nta)₃(H₂O)₂] complexes

2. Theoretical Judd–Ofelt (J-O) intensity parameters (Ω_{λ}) (λ = 2, 4 and 6)

The theoretical intensity parameters derived from the Judd-Ofelt theory² were calculated by the following expression³:

$$\Omega_{\lambda}^{calc} = (2\lambda + 1) \sum_{t}^{\lambda - 1, \lambda + 1(odd)} \sum_{p = -t}^{t} \frac{\left| \boldsymbol{B}_{\lambda tp} \right|^2}{(2t + 1)}$$
Eq. S1

$$B_{\lambda t p} = \frac{2}{\Delta E} \left\langle r^{t+1} \right\rangle \theta(t,\lambda) \gamma_p^t - \left[\frac{(\lambda+1)(2\lambda+3)}{2\lambda+1} \right]^{1/2} \left\langle r^{\lambda} \right\rangle (1-\sigma_{\lambda}) \left\langle f \left\| C^{(\lambda)} \right\| f \right\rangle \Gamma_p^t \delta_{t,\lambda+1} \quad \text{Eq. S2}$$

$$\gamma_{p}^{t} = \left(\frac{4\pi}{2t+1}\right)^{\frac{1}{2}} e^{2} \sum_{j} \rho_{j} \left(2\beta_{j}\right)^{t+1} \frac{g_{j}}{R_{j}^{t+1}} Y_{p}^{t*}\left(\theta_{j}, \phi_{j}\right)$$
 Eq. S3

$$\Gamma_p^t = \left(\frac{4\pi}{2t+1}\right)^{\frac{1}{2}} \sum_j \frac{\alpha_j}{R_j^{t+1}} Y_p^{t^*} \left(\theta_j, \phi_j\right)$$
 Eq. S4

The distance from atom *j* coordinated directly to the lanthanide ion (R_j) together with the corresponding angular coordinates (θ_j and ϕ_j) show the dependency of the theoretical intensity parameters on the complex structure. Eq. S2 contains the contribution from the forced electric dipole and dynamic coupling mechanisms. The theoretical Ω_{λ} have been calculated by adjusting the charge factors (g_j) and polarizabilities (α_j), Eq. S3 and S4, respectively, in order to reproduce the experimental values of Ω_2 and Ω_4 . The complete procedure used to calculate Ω_{λ} is widely discussed in reference.⁴

The QDC model⁴ implemented into LUMPAC⁵ postulates that the g_j are obtained from the product between adjustable parameters (Q) and each ZDO (*Zero Differential Overlap*) electronic density (q_j) of each atom *j* coordinated directly to the lanthanide ion. Similarly, the QDC model postulates that the α_j are calculated using two adjustable parameters (D and C)

$$g_j = Q.q_j$$
 Eq. S5

$$\alpha_j = SE_j \cdot D + C \qquad \qquad \text{Eq. S6}$$

The ZDO electronic density and the electrophilic superdelocalizability (*SE*) for any atom μ of the complex are calculated by

$$q_{\mu} = 2 \sum_{i'}^{occ.} \sum_{p}^{N_{\mu}} \left| c_{pi'}^{\mu} \right|^2$$
 Eq. S7

$$SE_{\mu} = 2\sum_{i'}^{occ.} \sum_{p} \sum_{q} \frac{c_{pi'}^{\mu} c_{qi'}^{\mu}}{\varepsilon_{i'}}$$
 Eq. S8

where *i*' runs through all the occupied molecular orbitals of the complex, *p* runs through all atomic orbitals, $c_{pi'}^{\mu}$ is the corresponding linear coefficient, and ε_i is the energy of the occupied molecular orbital *i*.

The theoretical radiative decay rate for europium is given by

$$A_{rad} = \frac{32e^{2}\pi^{3}\chi}{3\hbar(2J+1)} \sum_{\lambda=2,4,6} \nu[{}^{5}D_{0} \rightarrow {}^{7}F_{J=\lambda}]{}^{3}\Omega_{\lambda} \left| \left< {}^{5}D_{0} \left\| U^{(\lambda)} \right\| {}^{7}F_{J=\lambda} \right> \right|^{2} + \frac{32\pi^{3}n^{3}\nu[{}^{5}D_{0} \rightarrow {}^{7}F_{1}]{}^{3}}{3\hbar} S_{md}$$
 Eq. S9

where *e* is the elementary charge; 2*J*+1 is the degeneracy of the initial state, in this case ⁵D₀, and therefore *J*=0. χ is the Lorentz local-field correction term given by $\chi = n(n^2 + 2)^2 / 9$, in this work value of refractive index *n* equal to 1.424 was considered. $\nu[{}^{5}D_{0} \rightarrow {}^{7}F_{J}]$ are the energies of the barycenters of the respective transitions. The magnetic dipole strength of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition is theoretically evaluated as being $S_{md} = 9.6 \times 10^{-42} \text{ esu}^2 \text{ cm}^{2} 6$.

3. Theoretical Quantum Yield

The PLQY (q) is defined as the ratio of the number of emitted photons by the lanthanide ion to the number of absorbed photons by the ligand.

$$q = \frac{A_{rad}\eta_{{}^{5}D_{0}}}{\varphi\eta_{S_{0}}}$$
 Eq. S10

where the terms η_{S_0} and $\eta_{S_{D_0}}$ correspond to the energetic population of the S₀ and ⁵D₀ states, respectively. φ is the absorption rate from the fundamental singlet to the excited singlet of the ligand. The normalized population of a given level *j* considered in the energy transfer modeling, η_j , are obtained from an equations system in the steady-state approximation.

$$\frac{d\eta_j}{dt} = -\sum_{i \neq j} W_{ji} \eta_j + \sum_{i \neq j} W_{ij} \eta_i$$
 Eq. S11

11 where W_{ij} is the transfer rate from level *i* to level *j*, with the transition rates from and to the same state are zero. In the steady-state approximation $\frac{d\eta_j}{dt} = 0$, allowing that the set of algebraic equations derived from Eq. S11 can be solved analytically. The emission quantum yield for the complexes were calculated with LUMPAC 1.4.0.⁵

4. Full EL Device structures

4.1 Single EML Device based on Eu-1

Device 1: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (3 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 2: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (4 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 3: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (5 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

4.2 Double EML Device based on Eu-1

Device 4: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (3 wt%): TcTa (10 nm)/**Eu-1** (3 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/Al (100 nm)

Device 5: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (4 wt%): TcTa (10 nm)/**Eu-1** (4 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 6: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-1** (5 wt%): TcTa (10 nm)/**Eu-1** (5 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

4.3 Single EML Device based on Eu-2

Device 1: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-2** (3 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 2: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-2** (4 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 3: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/**Eu-2** (5 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

4.4 Double EML Device based on Eu-2

Device 4: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/Eu-2 (3 wt%): TcTa (10 nm)/Eu-2 (3 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 5: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/Eu-2 (4 wt%): TcTa (10 nm)/Eu-2 (4 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Device 6: ITO/HAT-CN (6 nm)/HAT-CN (0.2 wt%): TAPC (50 nm)/Eu-2 (5 wt%): TcTa (10 nm)/Eu-2 (5 wt%): 26DCzPPy (10 nm)/Tm3PyP26PyB (60 nm)/LiF (1 nm)/AI (100 nm)

Table S1.Corrected emission intensity relative to ${}^5D_0 \rightarrow {}^7F_1$ transition, Barycenter,
%contribution of each transition of Eu-1 and Eu-2 in DCM solution at RT

	Corrected emission Intensity relative to ${}^5D_0 \rightarrow {}^7F_1$ transition								
	$\int 0 - 0$	$\int 0-1$	$\int 0-2$	$\int 0-3$	$\int 0-4$	∫total			
Eu-1									
Corrected intensity ^a	0.24	1.00	18.89	0.63	2.06	82			
Barycenter (cm ⁻¹)	17253.59	16883.65	16214.77	15310.25	14338.68	22.6			
%contribution	1.05%	-	82.77%	2.76%	9.02%				
Eu-2									
Corrected intensity ^a	0.23	1.00	20.42	0.61	2.21	2			
Barycenter (cm ⁻¹)	17261.37	16881.43	16218.07	15322.58	(14337.79)	24.47			
%contribution	[0.93%]	-	[83.44%]	[2.49%]	[9.03%]				

^arelative to the MD ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition

Table S2. Sparkle/RM1 model ZDO electronic densities (*q*) and electrophilic superdelocalizabilities (*SE*), by considering the B3LYP/SVP/MWB52 geometry, for each atom directly coordinated to Eu³⁺, in complexes **Eu-1** and **Eu-2**, together with corresponding charge factors (*g*) and polarizabilities (α) from the fitting. Calculated electric dipole intensity parameters ($\Omega_{\lambda}^{\text{FED}}$) for both complexes

	Eu-1					Eu-2			
	$Q = 0.0169 \text{ au}^{-1}$				Ligand Atom	Q = 0.0319 au ⁻¹			
	D = 40.58 au⁻¹⋅ų					D = 42.32 au⁻¹⋅ų			
Ligand	$C = 19.32 Å^3$					C = 20.41 Å ³			
Atom	<i>D/C</i> = 2.10 au ⁻¹					<i>D/C</i> = 2.07 au ⁻¹			
	q	SE	a	α		q	SE	g	α
	(au)	(au)	9	(ų)		(au)	(au)		(ų)
O(DPEPO)	6.8450	-0.4289	0.1160	1.9161	O(DPEPO)	6.8477	-0.4163	0.2187	2.7914
O(DPEPO)	6.8338	-0.4360	0.1158	1.6286	O(DPEPO)	6.8325	-0.4376	0.2182	1.8937
O(btfa1)	6.3177	-0.4089	0.1070	2.7268	O(nta1)	6.3191	-0.4194	0.2018	2.6610
O(btfa)	6.3435	-0.4347	0.1075	1.6815	O(nta1)	6.3427	-0.4484	0.2026	1.4357
O(btfa2)	6.3395	-0.4184	0.1074	2.3415	O(nta2)	6.3447	-0.4309	0.2026	2.1759
O(btfa2)	6.3447	-0.4614	0.1075	0.5954	O(nta2)	6.3242	-0.4677	0.2020	0.6177
O(btfa3)	6.3367	-0.2841	0.1074	7.7923	O(nta3)	6.3396	-0.3013	0.2025	7.6614
O(btfa3)	6.3313	-0.2341	0.1073	9.8193	O(nta3)	6.3401	-0.2370	0.2025	10.3838
	$\Omega_2^{\text{FED}} = 0.0001 \times 10^{-20} \text{ cm}^2$				$\Omega_2^{\text{FED}} = 0.0005 \times 10^{-20} \text{ cm}^2$				
	$\Omega_4^{\text{FED}} = 0.0022 \times 10^{-20} \text{ cm}^2$				$\Omega_4^{\text{FED}} = 0.0079 \times 10^{-20} \text{ cm}^2$				
	$\Omega_6^{\text{FED}} = 0.0049 \times 10^{-20} \text{ cm}^2$				$\Omega_6^{\text{FED}} = 0.0167 \times 10^{-20} \text{ cm}^2$				

Table S3.Singlet and triplet excited states energy and corresponding distance from the
Eu(III) nucleus to the electronic barycenter of the ligand donor state (RL) for the
different RM1 geometries considered for the Eu-1 and Eu-2 complexes

Complex	R _{L,sing.} (Å)	E _{sing.} (cm ⁻¹)	R _{L,trip.} (Å)	E _{trip.} (cm ⁻¹)						
INDO/S-CIS // RM1										
Eu-1										
Eu-1 -1	3.97	36058.9	4.90	20720.2						
Eu-1 -2	3.81	35713.3	4.69	20721.7						
Eu-1 -3	4.30	35983.9	4.89	20896.7						
Eu-1 -4	4.28	36604.6	3.98	21038.4						
Eu-1 -5	4.51	36227.7	4.69	20969.0						
Eu-1 -6	4.25	36402.8	4.49	20935.9						
Eu-1 -7	4.08	35751.6	4.25	20865.5						
Eu-1 -8	4.35	36122.6	4.60	20890.1						
Eu-2										
Eu-2 -1	5.25	34962.9	5.49	20959.6						
Eu-2 -2	4.87	35752.2	5.95	22009.4						
Eu-2 -3	4.91	35883.7	5.52	21166.7						
Eu-2 -4	5.57	36389.0	5.49	21058.1						
Eu-2 -5	5.34	36956.9	5.54	21203.7						
Eu-2 -6	5.45	36321.3	5.69	21120.7						
Eu-2 -7	5.16	36546.1	5.47	21180.7						
Eu-2 -8	5.27	36884.1	5.50	21128.2						

Fig. S1. Positive mode ESI-MS spectrum of Eu-1 complex in acetone solution.

Fig. S2. FTI-R spectrum of solid **Eu-1** complex with its expansion from $2000 - 650 \text{ cm}^{-1}$.

Fig. S3. Positive mode ESI-MS spectrum of Eu-2 complex in acetone solution.

Fig. S4. FTI-R spectra of solid **Eu-2** complex with its expansion from 2000 – 650 cm⁻¹.

Fig. S5. Geometries optimized at the RM1 level of theory for different structural possibilities considered for Eu-1. The values in the parentheses are the heat of formation for each structure calculated with RM1. *Conformation of the starting structure (CSD CODE 1942486).

Eu-2-7 (-720.52 kcal mol⁻¹)

Eu-2-8 (-718.75 kcal mol⁻¹)

Fig. S6. Geometries optimized at the RM1 level of theory for different structural possibilities considered for **Eu-2** complex. The values in the parentheses are the heat of formation for each structure calculated with RM1.

Fig. S7. Excitation spectra of the Eu-1 and Eu-2 complexes in DCM solution at RT.

Fig. S8.International Commission on Illumination (CIE) 1931 chromaticity diagram ofEu-1 showing the observed color in DCM solution at RT.

Fig. S9. 1931 CIE chromaticity diagram of Eu-2 showing the observed color in DCM solution at RT.

 $\label{eq:Fig.S10} \begin{array}{ll} \mbox{Magnification of the region between 500}-570\mbox{ nm displaying }{}^5D_1 \rightarrow {}^7F_{1-2} \\ \mbox{transitions at RT for ${\rm Eu-1}$ complex.} \end{array}$

Fig. S11. Magnification of the region between 500 – 570 nm displaying ${}^5D_1 \rightarrow {}^7F_1$ transitions at RT for Eu-2 complex.

Fig. S12. Decay curve of Eu-1 with fitted curve and observed luminescence lifetime in DCM at RT.

Fig. S13. Decay curve of Eu-2 with fitted curve and observed luminescence lifetime in DCM at RT.

Fig. S14. Normalized EL spectra of the double-EML devices 4, 5 and 6 of Eu-1 operating at 10 mA/cm².

Fig. S15. Normalized EL spectra of the double-EML devices 4, 5 and 6 of Eu-2 operating at 10 mA/cm².

Fig. S16. CIE 1931 chromaticity diagrams of single EML devices **1**, **2** and **3** of **Eu-2** with magnified view operating at 10 mA/cm².

Fig. S17. CIE 1931 chromaticity diagrams of single EML devices **4**, **5** and **6** of **Eu-1** with magnified view operating at 10 mA/cm².

Fig. S18. CIE 1931 chromaticity diagrams of single EML devices **4**, **5** and **6** of **Eu-2** with magnified view operating at 10 mA/cm².

References

- L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris, *J. Am. Chem. Soc.*, 1964, 86, 5117-5125.
- (a) B. R. Judd, *Phys. Rev.*, 1962, **127**, 750-761; (b) G. S. Ofelt, *J. Chem. Phys.*, 1962, **37**, 511-520.
- 3. G. F. de Sa, O. L. Malta, C. D. Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz and E. F. da Silva, *Coordin Chem Rev*, 2000, **196**, 165-195.
- 4. J. D. L. Dutra, N. B. D. Lima, R. O. Freire and A. M. Simas, *Sci. Rep.*, 2015, **5**, 13695.
- 5. J. D. Dutra, T. D. Bispo and R. O. Freire, *J. Comput. Chem.*, 2014, **35**, 772-775.
- 6. M. J. Weber, T. E. Varitimo and B. H. Matsinge, *Phys Rev B*, 1973, **8**, 47-53.