Supporting Information

Enhanced permittivity in polymer blends via tailoring the orderliness

of semiconductive liquid crystalline polymers and intermolecular

interactions

Kun Qian^a, Rui Qiao^a, Sheng Chen^{*a}, Hang Luo^{*b} and Dou Zhang^b

^a Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China

^b State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China

Abbreviation	Full name		
MHT	2-[3,6,7,10,11-pentakis(hexyloxy)-2-oxytriphenylene] ethyl methacrylate		
M9F	2-(perfluorobutyl) ethyl methacrylate		
PHT	poly{2-[3,6,7,10,11-pentakis(hexyloxy)-2-oxytriphenylene] methacrylate}		
P9F	poly [2-(perfluorobutyl) ethyl methacrylate]		
RAFT	reversible-addition-fragmentation chain transfer		
PVDF	poly(vinylidene fluoride)		
THF	tetrahydrofuran		
DMF	dimethylformamide		
BaTiO ₃	barium titanate		
SrTiO ₃	strontium titanate		
CaCu ₃ Ti ₄ O ₁₂	calcium copper titanate		
PTTEMA	poly{2-(2, 2':5', 2" -terthien-5-yl)ethyl methacrylate}		
PCMS	poly(p-chloromethyl styrene)		
PPy	polypyrrole		
PANI	polyaniline		
CuPc	copper phthalocyanine oligomer		
PVDF-CTFEpoly(vinylidene fluoride-chlorotrifluoroethylene)			
AIBN azodiisobutyronitrile			
CTA	2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid		
$M_{ m w}$	weight-average molecular weight		
M_n	number-average molecular weight		
TMS	tetramethylsilane		
NMR	nuclear magnetic resonance		
GPC	gel permeation chromatography		
DSC	differential scanning calorimetry		
1D WAXD	one-dimensional wide-angle X-ray diffraction		
SAXS	small-angle X-ray scattering		
FT-IR	fourier-transform infrared		
TGA	thermogravimetric analysis		
SEM	scanning electron microscopy		
POM	polarized optical microscopy		
PDI	polydispersity index		
T _i	clearing point		
T _d	thermal decomposition temperatures		
X_{c}	crystallinity		
ΔH_m	melting enthalpy		
W_{f}	mass ratio		
3	dielectric constant		

Characterization

Nuclear magnetic resonance (NMR) measurements were performed on a Bruker ARX400 MHz spectrometer using with CDCl₃ as solvent, tetramethylsilane (TMS) as the internal standard at room temperature.

Gel permeation chromatography (GPC). The apparent number average molecular weight (M_n) and polydispersity index (PDI = M_w/M_n) were measured on a GPC (WATERS 1515) instrument with a set of HT3, HT4 and HT5. The μ -styragel columns used THF as an eluent and the flow rate was 1.0 mL/min at 38 °C. The GPC data were calibrated with polystyrene standards.

Differential scanning calorimetry (DSC). DSC traces of the polymer were obtained using a TA Q10 DSC instrument. The temperature and heat flow were calibrated using standard materials (indium and zinc) at a cooling and heating rates of 10 °C/min. The sample with a typical mass of about 5 mg was encapsulated in sealed aluminium pans.

Powder 1D WAXD experiments were performed on a BRUKER AXS D8 advance diffractometer with a 40 kV FL tubes as the X-ray source (Cu Ka) and a LYNXEYE XE detector. The scanning speed of 1D WAXD was 2°/min.

Small-angle X-ray scattering (SAXS). SAXS were performed with a high-flux SAXS instrument (SAXSess, Anton Paar), equipped with Kratky block-collimation system and a Philips PW 3830 sealed-tube X-ray generator (Cu Ka).

Fourier-transform infrared (FT-IR) spectroscopy was performed with a Nicolet 6700 instrument over the range of 4000~600 cm⁻¹ to determine the functionalization of the samples.

Thermogravimetric analysis (TGA) was performed on a TA SDT 2960 instrument at a heating rate of 20 °C/min in a nitrogen atmosphere.

The morphology of the composites was performed by scanning electron microscopy (SEM, JSM-6390).

Liquid crystalline texture of the polymers was examined under polarized optical microscopy (POM, Leica DM-LMP) equipped with a Mettler-Toledo hot stage (FP82HT).

Frequency-dependent dielectric constant, dielectric loss and conductivity were measured using an Agilent 4294A LCR meter with a frequency range from 100 Hz to 10 MHz.

Sample	$T_m(K)^a$	$\Delta H_m (J/g)^b$	X _c (%) ^c
PVDF	431.87	24.68	24.03
1%PHT/PVDF	432.51	31.14	30.63
3%PHT/PVDF	432.55	31.09	31.21
5%PHT/PVDF	435.26	28.20	28.90
10%PHT/PVDF	433.17	29.23	31.62
15%PHT/PVDF	433.24	27.40	31.39
20%PHT/PVDF	433.65	26.77	32.58
30%PHT/PVDF	433.24	18.92	26.32
40%PHT/PVDF	433.52	15.47	25.11
PVDF	431.87	24.68	24.03
5%PHT- <i>co</i> -P9F	431.55	29.82	30.56
10%PHT- <i>co</i> -P9F	431.64	27.21	29.44
15%PHT- <i>co</i> -P9F	431.69	26.45	30.30
20%PHT- <i>co</i> -P9F	432.27	23.92	29.11
30%PHT- <i>co</i> -P9F	431.46	20.64	28.71
40%PHT- <i>co</i> -P9F	431.45	17.42	28.27
50%PHT- <i>co</i> -P9F	431.50	13.89	27.05
PVDF	431.87	24.68	24.03
5%PHT- <i>b</i> -P9F	432.19	29.71	30.45
10%PHT- <i>b</i> -P9F	432.13	29.03	31.41
15%PHT- <i>b</i> -P9F	431.87	26.08	29.88
20%PHT- <i>b</i> -P9F	432.01	24.74	30.11
30%PHT- <i>b</i> -P9F	431.78	20.28	28.21
40%PHT- <i>b</i> -P9F	431.51	18.63	30.23
50%PHT- <i>b</i> -P9F	431.63	15.55	30.28

Table S2. Physical properties of three kinds of polymer alloy films underdifferent polymer content.

^a The melting temperatures (T_m) were measured by DSC at a heating rate of 10 °C/min under nitrogen atmosphere during the second heating process.

 ${}^{b}\Delta H_{m:}$ the value of the melting enthalpy of the sample resulting from the second DSC heating process

^c X_c: the crystallinity.

Figure S1. Frequency dependence of the conductivity of (a) PHT/PVDF; (b) PHT-*co*-P9F/PVDF and (c) PHT-*b*-P9F/PVDF polymer alloys at room temperature.