Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Mechano-electric coupling in PVDF/spin crossover nano-composites

Mario Piedrahita-Bello,^[a] Baptiste Martin,^[b] Lionel Salmon,*^[a] Gábor Molnár,^[a] Philippe Demont^[b] and Azzedine Bousseksou*^[a]

^[a]LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France. E-mail: azzedine.bousseksou@lcc-toulouse.fr

[b] CIRIMAT, CNRS & University of Toulouse (UPS, INPT), 118 Route de Narbonne, 31062

Toulouse. E-mail: philippe.demont@univ-tlse3.fr

SCO	%С	%C	%Н	%Н	%N	%N	%В	%В	%Fe	%Fe
sample	(found)	(calc)								
1	19.3	19.5	1.99	2.81	35.6	34.9	3.1	3.07	15.7	15.2
2	18.8	18.6	2.16	2.91	33.4	33.6	3.23	3.21	14.8	14.4
3	18.2	18.3	1.6	2.84	31.8	32.6	3.45	3.42	14.1	14.2
4	20.3	20.6	2.08	3.13	32.9	34.1	2.71	2.85	15.2	14.8
5	24.3	24.2	3.91	4.4	41.7	42.3				

Table S1: Elemental analyses of SCO complexes

Figure S1: SEM images of the composite **1a** cross-section.

Figure S2: SEM coupled EDX analysis of two randomly selected areas for composite 1a

Image électronique 2

Figure S3: SEM images of the composite **4a** cross-section.

Figure S4: SEM coupled EDX analysis of two randomly selected areas for composite 4a.

Image électronique 2

Figure S5: SEM images of the composite **5c** cross-section

Figure S6: SEM coupled EDX analysis for composite 5c

Image électronique 1

Figure S7: Powder XRD of the different composite **5a-5e** recorded at room temperature

Figure S8: DSC Measurements for the composite materials and the pure copolymers

1a-15% Triazole Mix Bulk PVDF-TrFE - 75-25:

3a – 15% Triazole Mix Particles PVDF-TrFE – 75-25:

4a-15% Triazole Mix $2\mu m$ Rods PVDF-TrFE - 75-25:

5b – 25% Triazolyl Borate PVDF-TrFE – 70-30:

5c - 25% Triazolyl Borate PVDF-TrFE - 75-25:

5d – 15% Triazolyl Borate PVDF-TrFE – 75-25:

5e – 5% Triazolyl Borate PVDF-TrFE – 75-25:

Figure S9: Variable temperature optical reflectivity measurement of the different SCO powder samples.

Reflectivity of the 2nd thermal cycle of the bulk and particles used in the synthesis of composites 1 and 3 respectively.

Reflectivity Measurement of the 2 um particles used in the synthesis of composite 4

Figure S10: Variable temperature optical reflectivity measurement of the P(VDF-TrFE)/SCO composite

Reflectivity Measurement of Composite 3a

Reflectivity Measurement of Composite 5a

Figure S11: Pyroelectric discharge cycle for a depolarized and repolarized composite 1a.

Figure S12: Pyroelectric discharge cycle for composite 2a with different polarization intensities:

Figure S13. Pyroelectric discharge cycle for a polarized composite **3a**.

Figure S14. Pyroelectric discharge cycle for a polarized composite **4a**.

Figure S15. Pyroelectric discharge cycle for a polarized composite 5a

Figure S16. Pyroelectric discharge cycle for a polarized composite 5b

Figure S17. Pyroelectric discharge cycle for a polarized composite 5c

Figure S18. Pyroelectric discharge cycle for a nonpolarized Composite **5d**. Dotted lines indicate the discharge peak temperatures for cooling (left) and heating (right).

Figure S19. Pyroelectric discharge cycle for a polarized composite 5d

Figure S20. Pyroelectric discharge cycle for a polarized composite 5e

Figure S23: Temperature-dependent Permittivity measurement of sample 5c.

P(VDF-TrFE)/[Fe(HB(trz)₃)₂]