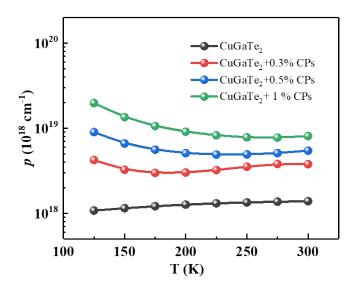
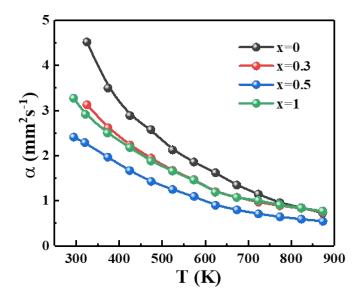
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting information for

Synergistically optimized electrical and thermal properties by introducing electron localization and phonon scattering centers for CuGaTe₂ with enhanced mechanical properties


Jian Zhang^{a*}, Lulu Huang^{a,b}, Chen Zhu^{a,b}, Zhenhua Ge^c, Yuanyue Li^d, Di Li^{a*}, Xiaoying Oin^{a*}

^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, PR China


^b University of Science and Technology of China, Hefei 230026, China

^c Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China

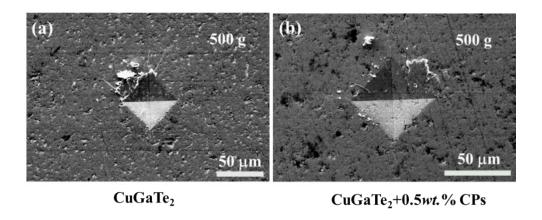

^d College of Microtechnology & Nanotechnology, Qingdao University, Qingdao, 266071, China

Figure S1. Temperature dependence of carrier concentrations (p) of CuGaTe₂+x wt.% CPs ($0 \le x \le 1$) samples at 300-125 K.

Figure S2. Temperature-dependent of thermal diffusivity (α) of the CuGaTe₂+x wt.% CPs (x= 0, 0.3, 0.5, 1) specimens.

Figure S3. Scanning electron micrographs of radial crack systems. (a) CuGaTe₂ (P= 500 g), (b) CuGaTe₂+0.5 *wt*.% CPs (P=500 g).