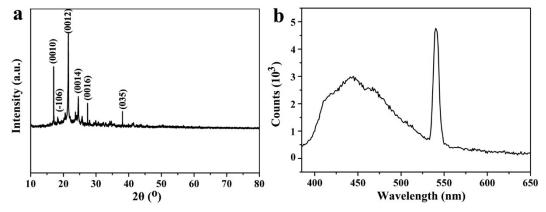

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020


Visualizing Ultrasmall Silica-CTAB Hybrid Nanoparticle for Generating High Photoluminescence

Yongju He¹, Chuan-Cun Shu^{2*}, Yu Guo³, Mengqiu Long^{2*}, Hui Xu²

Corresponding authors (*):cc.shu@csu.edu.cn&mqlong@csu.edu.cn

Figure S1 (a) Photoluminescence emission spectra of SCHN under 256 nm excitation, photographs of SCHN-12 in their solid state under (b) 256 nm UV lamp and (c) day light.

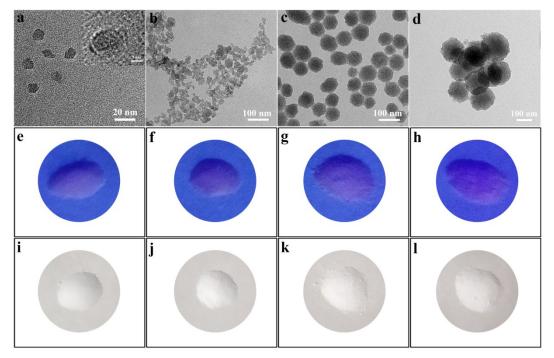


Figure S2 (a) The powder XRD patterns of the partial CTAB-removing SCHN-12, (b) photoluminescence emission spectra of the partial CTAB-removing SCHN-12 under 365 nm excitation.

¹ School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China

² Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

³ Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China

Figure S3 TEM images and photographs of PSN with different particle sizes. TEM images of (a) PSN-12, (b) PSN-23, (c) PSN-80 and (d) PSN-150. (b) Photographs of (e, i) PSN-12, (f, j) PSN-23, (g, k) PSN-80 and (h, l) PSN-150 in their solid state under 365 nm UV lamp (upper) and day light (down).

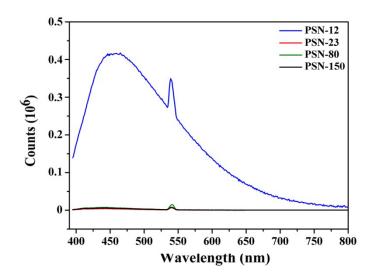


Figure S4 Photoluminescence emission spectra of PSN-12, PSN-23, PSN-80 and PSN-150 under 365 nm excitation.

Table S1 The hydrodynamic particle sizes of SCHN samples.

Sample	Size (nm)	PDI
SCHN-12	14.1±1.2	0.128±0.029
SCHN-23	26.7±2.9	0.198 ± 0.013
SCHN-80	95.6±3.2	0.208 ± 0.035
SCHN-150	180.3±8.6	0.226±0.020

Table S2 The hydrodynamic particle sizes of PSN samples.

Sample	Size (nm)	PDI
PSN-12	13.9±2.2	0.134±0.022
PSN-23	26.4±6.1	0.181 ± 0.006
PSN-80	91.9±3.7	0.239±0.018
PSN-150	175.2±4.9	0.242±0.027

Table S3 The quantum yields of PSN with different particle sizes.

Sample	PSN-12	PSN-23	PSN-80	PSN-150
Quantum yield	1.03 %	1.07 %	1.38 %	0.93 %

Table S4 The fluorescence lifetimes of SCHN with different particle sizes.

Sample	Fluorescence lifetimes		
	$ au_1$	$ au_2$	
SCHN-12	1.14	9.18	
SCHN-23	1.15	9.26	
SCHN-80	1.07	9.37	
SCHN-150	1.15	9.47	

Theoretical model

We consider two different two-state molecules $|S_{c0}\rangle$ and $|S_{c1}\rangle$ with a transition frequency ω_1 for CTAB, and $|S_{p0}\rangle$ and $|S_{p1}\rangle$ with a transition frequency ω_2 for PSN, and the two molecules are coupled through the dipole-dipole interaction in a strength of β . A four-state quantum system is formed with states $|S_{c0}S_{p0}\rangle$, $|S_{c0}S_{p1}\rangle$, $|S_{c1}S_{p0}\rangle$, and $|S_{c1}S_{p1}\rangle$, and the Hamiltonian $|H_0\rangle$ with the dipole-dipole interaction can be written as

$$H_0 = \begin{pmatrix} -\omega_0 & 0 & 0 & 0 \\ 0 & -\Delta & \beta & 0 \\ 0 & \beta & \Delta & 0 \\ 0 & 0 & 0 & \omega_0 \end{pmatrix}$$

(1)

Where $\omega_0 = (\omega_1 + \omega_2)/2$ and $\Delta = (\omega_2 - \omega_1)/2$. By diagonalizing the nondiagonal Hamiltonian $H_{0, \text{ four collective (Dicke)}}$ states can be given by [1,2]

$$\begin{split} |G\rangle &= |S_{c0}S_{p0}\rangle \\ |S\rangle &= \alpha |S_{c0}S_{p1}\rangle + \gamma |S_{c1}S_{p0}\rangle \\ |A\rangle &= \alpha |S_{c1}S_{p0}\rangle - \gamma |S_{c0}S_{p1}\rangle |E\rangle = |S_{c1}S_{p1}\rangle \end{split} \tag{2}$$

Where the corresponding eigenvalues are $E_G = -\omega_0$, $E_S = w$, $E_A = -w$, and $E_E = \omega_0$, where $\alpha = \frac{r}{\sqrt{r^2 + \beta^2}}$,

$$\gamma = \frac{r}{\sqrt{r^2 + \beta^2}}, w = \sqrt{\Delta^2 + \beta^2}, \text{ and } r = \Delta + \sqrt{\Delta^2 + \beta^2}. \text{ From Eq. (2), we can obtain}$$

$$|S_{c0}S_{p0}\rangle = |G\rangle$$

$$|S_{c1}S_{p0}\rangle = \alpha|A\rangle + \gamma|S\rangle$$

$$|S_{c0}S_{p1}\rangle = \alpha|S\rangle - \gamma|A\rangle |S_{c1}S_{p1}\rangle = |E\rangle$$

(3)

The interaction Hamiltonian between molecules and field reads

$$H_c(t) = -\varepsilon(t)\mu_c \left(\left| S_{c1}S_{p0} \right\rangle \left\langle S_{c0}S_{p0} \right| + \left| S_{c0}S_{p1} \right\rangle \left| S_{c1}S_{p1} \right\rangle \right) - \varepsilon(t)\mu_p \left(\left| S_{c0}S_{p1} \right\rangle \left\langle S_{c0}S_{p0} \right| + \left| S_{c1}S_{p0} \right\rangle \left| S_{c1}S_{p1} \right\rangle \right) + h.c.$$

(4)

By inserting Eq. (3) into Eq. (4), we can rewrite the interaction Hamiltonian in the basis of the four collective states,

$$H_c(t) = -\varepsilon(t) \begin{pmatrix} 0 & \mu_c \alpha - \mu_p \gamma & \mu_c \gamma + \mu_p \alpha & 0 \\ \mu_c \alpha - \mu_p \gamma & 0 & 0 & \mu_p \alpha - \mu_c \gamma \\ \mu_c \gamma + \mu_p \alpha & 0 & 0 & \mu_c \alpha + \mu_p \gamma \\ 0 & \mu_p \alpha - \mu_c \gamma & \mu_c \alpha + \mu_p \gamma & 0 \end{pmatrix}$$

(5)

From Eq. (5), we can see that the effective transition dipole moments of the transition between states $|G\rangle(|E\rangle)$ and $|S\rangle(|A\rangle)$ are

$$\begin{split} \mu_{GS} &= \mu_c \gamma + \mu_p \alpha \\ \mu_{GA} &= \mu_c \alpha - \mu_p \gamma \\ \mu_{ES} &= \mu_c \alpha + \mu_p \gamma \\ \mu_{ES} &= \mu_p \alpha - \mu_c \gamma \end{split}$$

References

[1] Z. Ficek, R. Tanas, Entangled states and collective nonclassical effects in two-atom systems, *Phys. Rep.*, **2002**, 372, 369-443.

[2] Y. Guo, X. B. Luo, S. Ma, C.-C. Shu, All-optical generation of quantum entangled states with strictly constrained ultrafast laser pulses, *Phys. Rev. A*, **2019**, 100, 023409.