Electronic Supplementary Information

Chemical Structure and Optical Signatures of Nitrogen Acceptors in MgZnO

M. Zakria¹, P. Bove², D. J. Rogers^{2,*}, F. H. Teherani², E. V. Sandana², M. R. Phillips¹, and C. Ton-That^{1,*}

¹ School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
² Nanovation, 8 Route de Chevreuse, 78117 Châteaufort, France

* Corresponding authors: d.j.rogers@nanovation.com, cuong.ton-that@uts.edu.au

Fig S1: Temperature-resolved PL spectra for (a) MgZnO:N/ZnO and (b) MgZnO:vac/ZnO bilayer. The sharp peaks at ~3.35 and 3.37 eV at 80 K, are assigned to the recombination of free excitons (FX) and donor-bound excitons (DX) in the ZnO underlayer, respectively. The N-related DAP emission peaked at 3.45 eV at 80 K is dominant in the MgZnO:N layer; this emission is absent in the MgZnO:vac over the entire temperature range investigated. The periodic set of Raman peaks, labelled 1LO, 2LO, 3LO and 4LO, are due to multiphonon resonant Raman scattering.