Supporting Information

Triazole Functionalized 5,9-Dioxa-13*b*-boranaphtho[3,2,1*de*]anthracene: A New Family of Multi-Stimuli Responsive Materials

Guoyun Meng,^a Tai Peng,^{*b} Yonggang Shi,^a Haijun Li,^c Xiang Wang,^c Xiaodong Yin,^a Deng-Tao Yang,^{*c} Suning Wang^{ac} and Nan Wang^{*a}

Table of contents

- **S1** General Information
- S2 Photophysical and electrochemical properties
- S3 Temperature-dependent NMR studies
- S4 Mechanoresponsive emission properties
- **S5 DFT/TD-DFT computational data**
- S6 ¹H NMR, ¹³C NMR and ¹¹B NMR spectra for isolated compounds
- S7 Crystal structure data
- **S8** References

<u>S1 General Information</u>

Scheme S1. Synthetic routes of B1–B3.

B5 (14%)

Scheme S2. Synthetic routes of B4–B5.

All reactions and operations were carried out using standard Schlenk techniques using dried and degassed solvents under an inert N₂ atmosphere. The precursors **1a** and **8a** were synthesized by the literature procedure. ¹H, ¹³C and ¹¹B NMR spectra were recorded on a Bruker Avance 400 MHz, 500 MHz or 700 MHz spectrometer. UV-visible absorption spectra were obtained on an Agilent Cary 300 UV-Vis spectrophotometer. Fluorescence spectra were recorded on an Edinburgh Instruments FLS980 spectrophotometer. Fluorescent quantum efficiencies were determined using a Hamamatsu Quantaurus-QY spectrometer (C11347). High-resolution mass spectra (HRMS) were obtained from an Agilent Q-TOF 6520 LC-MS spectrometer. The powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8 Advance diffractometer. Cyclic voltammetry and differential pulsed voltammetry were conducted on an AUTOLAB-CV-75W analyzer with a scan rate of 100 mV s⁻¹. The electrochemical cell was a standard three-compartment cell composed of a Pt working electrode, a Pt auxiliary electrode, and a Pt wire reference electrode. All measurements were performed in anhydrous and nitrogensaturated CH₂Cl₂ / THF solutions with 0.10 M of NBu₄NPF₆ as the supporting electrolyte and 2.0 mM investigated compounds. The oxidation and reduction potentials are based on values measured from differential pulsed voltammetry and are reported relative to a ferrocene/ferrocenium (Fc/Fc^+) redox couple used as a standard.

Density Functional Theory (DFT) Calculations. TD-DFT calculations were carried out using the Gaussian 09 software24^[1] at the High Performance Computing Virtual Laboratory (HPCVL) at Queen's University. All computations were performed at the B3LYP level of theory using 6-31G(d) as the basis set for all atoms.^[2,3]

X-ray Crystallography. Single-crystal X-ray diffraction data were recorded on a Bruker D8 Venture X-ray single-crystal diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å) at 180 K for all compounds. Data were processed on a PC with the aid of the Bruker SHELXTL software package and corrected for absorption effects. All non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and refined isotropically. CCDC 1967670 (**B1**), 1967673 (**B2**), and 1967674 (**B3**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Synthesis of compound 1

To a 50 mL Schlenk flask with a stir bar was added CuI (47.4 mg, 0.25mmol), 1-iodo-4methoxybenzene (1.0 g, 4.3 mmol), 1,10-phenanthroline (45 mg, 0.025 mmol), 1-butyl-1,2,4triazole (0.26 g, 2.1 mmol), *t*-BuOLi (0.5 g, 6.2 mmol), and DMF (15 mL). The resulting mixture were heated at 130 °C for 5 h. After the solvent was removed under reduced pressure, the reaction mixture was purified by flash chromatography on silica gel with petroleum ether / ethyl acetate (2:1, v/v) as eluent, and give 1 as colorless oil (0.38 g, 79%). ¹H NMR (400 MHz, CDCl₃, δ): 7.92 (s, 1H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 4.19 (t, *J* = 7.4 Hz, 2H), 3.87 (s, 3H), 1.90–1.83 (m, 2H), 1.35–1.26 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H).

Synthesis of compound 1a

In a 50 mL flask, equipped with a stir bar, reflux condenser, and N₂ gas inlet, were placed **1** (1.16 g, 5 mmol) and 25 mL of 48% hydrobromic acid. The resulting mixture was heated to 130 °C for 24 h, and then the solution was cooled to room temperature and poured into 500 mL of vigorously stirred distilled water to afford a light brown solid (0.94 g, 86%). ¹H NMR (400 MHz, CDCl₃, δ): 10.59 (s, 1H), 7.98 (s, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.6 Hz, 2H), 4.17 (t, *J* = 7.4 Hz, 2H), 1.90–1.83 (m, 2H), 1.34–1.25 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, δ): 159.7, 154.9, 149.7, 130.3, 117.7, 116.4, 49.1, 32.0, 19.8, 13.6.

Synthesis of compound 2a and 4a

DMF (5 mL) was added to a mixture of 2-bromo-1,3-difluorobenzene (0.17 g, 0.89 mmol), K_2CO_3 (0.49 g, 3.56 mmol) and **1a** (0.43 g, 1.99 mmol) at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at 160 °C for 24 h, and then cooled to room temperature. After addition of CH_2Cl_2 and water, the organic layer was washed with water twice, and then condensed in vacuo. The reaction mixture was purified by flash chromatography on silica gel with CH_2Cl_2 / ethyl acetate (1:1, v/v) as eluent to give **4a** (0.23 g, 44%) and **2a** (0.18 g, 52%) as colorless oil. Compound **4a:** ¹H NMR (400 MHz, CDCl₃, δ): 7.95 (s, 2H), 7.66–7.59 (m, 4H), 7.32 (t, *J* = 8.2 Hz, 1H), 7.17–7.09 (m, 4H), 6.91 (d, *J* = 8.2 Hz, 2H), 4.21 (t, *J* = 7.4 Hz, 4H), 1.93–1.85 (m, 4H), 1.37–1.27 (m, 4H), 0.90 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃, δ): 158.3, 154.9, 154.1, 151.0, 130.7, 129.1, 123.6, 118.3, 117.0, 109.4,

49.2, 32.2, 19.9, 13. 7; Compound **2a:** ¹H NMR (400 MHz, CDCl₃, δ): 7.94 (s, 1H), 7.63–7.58 (m, 2H), 7.11–7.06 (m, 2H), 7.00 (d, *J* = 8.2, 1H), 6.85 (d, *J* = 8.3, 1H), 4.20 (t, *J* = 7.4 Hz, 2H), 1.92–1.84 (m, 2H), 1.36–1.27 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

Synthesis of compound 3a

Compound **3a** was synthesized using the same procedure as that for compound **4a**, and obtained as colorless oil in 49% yield. ¹H NMR (400 MHz, CDCl₃, δ): 7.95 (s, 1H), 7.64–7.58 (m, 2H), 7.31 (td, *J* = 8.2, 6.4 Hz, 1H), 7.12–7.07 (m, 2H), 6.95–6.89 (m, 1H), 6.78 (d, *J* = 8.2 Hz, 1H), 4.21 (t, *J* = 7.6 Hz, 2H), 1.92–1.85 (m, 2H), 1.36–1.27 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, δ): 164.6, 162.1, 158.2, 157.6, 157.5, 154.1, 151.0, 130.8, 131.0, 130.6, 123.7, 118.6, 115.6, 111.8, 111.5, 49.2, 32.2, 19.9, 13.7.

Synthesis of compound 5a

Compound **5a** was synthesized using the same procedure as that for compound **4a**, and obtained as colorless oil in 98% yield. ¹H NMR (400 MHz, CDCl₃, δ): 8.04 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 2H), 7.20 (t, *J* = 7.9 Hz, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 7.9 Hz, 2H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.66 (d, *J* = 8.2 Hz, 1H), 4.24 (t, *J* = 6.9 Hz, 2H), 3.82 (s, 3H), 1.94–1.87 (m, 2H), 1.38–1.28 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, δ): 157.4, 156.6, 154.1, 153.8, 153.6, 149.6, 149.5, 130.8, 128.7, 120.9, 118.1, 115.6, 115.2, 114.1, 55.8, 49.5, 32.0, 19.9, 13.7.

Synthesis of compound 6a

Compound **6a** was synthesized using the same procedure as that for compound **4a**, and obtained as white powder in 43% yield. ¹H NMR (400 MHz, CDCl₃, δ): 7.94 (s, 1H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.18 (t, *J* = 8.2 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 2H), 7.00 (d, *J* = 9.1 Hz, 2H), 6.75 (d, *J* = 9.1 Hz, 2H), 6.67 (d, *J* = 8.1 Hz, 1H), 6.53 (d, *J* = 9.4 Hz, 1H), 4.21 (t, *J* = 7.4 Hz, 2H), 2.96 (s, 6H), 1.93–1.85 (m, 2H), 1.37–1.28 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, δ): 160.7, 158.7, 157.3, 154.3, 151.0, 148.3, 146.9, 130.6, 130.0, 123.2, 121.2, 118.3, 114.1, 113.9, 112.4, 83.2, 49.2, 41.3, 32.2, 19.9, 13.7.

Synthesis of compound 7a

A solution of n-butyllithium in hexane (2.33 mL, 1.6 M, 1.36 mmol) was added slowly to compound **5a** (0.56 g, 1.13 mmol) in *t*-butylbenzene (10 mL) at -30 °C under a nitrogen atmosphere. After the reaction mixture was stirred for 2 h, boron tribromide (0.21 mL, 2.26 mmol) was added at -30 °C. After the reaction mixture was allowed to warm to room temperature, and stirred for 1 h, *N*,*N*-diisopropylethylamine (NEt*i*-Pr₂, 1.02 mL, 2.26 mmol) was added at 0 °C. After stirring at 140 °C for 24 h, sodium acetate aqueous solution was added at 0 °C. The precipitate was separated by filtration, and the organic layer was washed with NH₄Cl aq. and brine. The crude product was purified by silica gel column chromatography using CH₂Cl₂ / ethyl acetate (5:1, v/v) as eluent to obtain the compound **7a** (0.1 g, 22% yield) as pale-yellow powder. ¹H NMR (400 MHz, CD₂Cl₂, δ): 8.36 (s, 1H), 8.09 (s, 1H), 7.67 (s, 1H), 7.60–7.56 (m, 2H), 7.22 (d, *J* = 8.4, 1H), 7.17 (d, *J* = 8.8, 1H), 7.09 (d, *J* = 8.9 Hz, 1H), 6.98–6.93 (m, 2H), 4.14 (t, *J* = 7.0 Hz, 2H), 1.85–1.79 (m, 2H), 1.29–1.20 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, δ): 161.6, 157.6, 157.0, 154.7, 154.5, 152.6, 152.5, 149.9, 135.8, 134.6, 133.5, 123.5, 121.0, 119.3, 119.2, 118.9, 109.1, 108.0, 49.6, 32.2, 20.0,

13.6; ¹¹B NMR (225 MHz, CDCl₃, δ): 35.35; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₁BN₃O₃⁺, 410.1670; found, 410.1677; [2M+H]⁺ calcd for C₄₈H₄₁B₂N₆O₆⁺, 819.3268; found, 819.3283.

Synthesis of compound 9a

The compound **8a** was synthesized according to the literature method.^[3] A 50 mL Schlenk flask was charged with compound **8a** (1.0 g, 2.34 mmol), trimethylsilylacetylene (1.5 mL, 10.76 mmol), PdCl₂(PPh₃)₂ (0.16 g, 0.23 mmol), PPh₃ (0.12 g, 0.47 mmol), CuI (67 mg, 0.35 mmol) and 20 mL of triethylamine. The mixture was stirred at 90 °C for 24 h, the reaction was quenched with 1 M HCl and extracted with CH₂Cl₂, and then concentrated under reduced pressure. The solid was then purified using flash chromatography through silica using petroleum ether / CH₂Cl₂ (10:1, v/v) as eluent. The resulting white solid was dissolved in 10 mL of tetrahydrofuran and treated with tetrabutylammonium fluoride (TBAF) in THF (0.8 mL of a 1.0 M solution). After stirring overnight, the resulting mixture was concentrated under reduced pressure. After extraction with dichloromethane, the organic layer was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The solid was then purified using petroleum ether / CH₂Cl₂ (20:1, v/v) as eluent. Yield, 0.2 g, 80%. ¹H NMR (400 MHz, CDCl₃, δ): 8.69 (s, 2H), 7.78–7.74 (m, 3H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 3.19 (s, 2H); ¹³C NMR (101 MHz, CDCl₃, δ): 160.3, 157.1, 138.6, 137.2, 135.3, 118.9, 116.9, 109.0, 83.6.

Synthesis of compound B1 and B3

A solution of tert-butyllithium (1.3 M, 1.74 mmol) was added slowly to a solution of phenoxy derivatives (0.87 mmol) in tert-butylbenzene (10 mL) at -30 °C under N₂ atmosphere. After

stirring at -30 °C for 2 h, BBr₃ (1.05 mmol) was added slowly at -30 °C. Then the reaction mixture was allowed to warm to room temperature for 1 h. NEt*i*-Pr₂ (1.74 mmol) was added at 0 °C. After stirring at 150 °C for 24 h, sodium acetate aqueous solution was added at 0 °C. The precipitate was separated by filtration, and the organic layer was washed with CH₂Cl₂ and brine. The crude product was purified by silica gel column chromatography using the appropriate solvents as the eluent.

B1. White solid (yield: 5%, using 5 : 1 of CH₂Cl₂ and ethyl acetate as the eluent). ¹H NMR (400 MHz, CDCl₃, δ): 8.02 (s, 2H), 7.84 (s, 2H), 7.63 (t, J = 8.1 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 4.05 (t, J = 7.3 Hz, 4H), 1.8–1.73 (m, 4H), 1.22–1.13 (m, 4H), 0.77 ppm (t, J = 7.3 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃, δ): 160.7, 157.1, 154.4, 149.5, 135.9, 131.8, 131.3, 119.8, 118.5, 109.9, 49.2, 31.8, 19.8, 13.5 ppm; ¹¹B NMR (225 MHz, CDCl₃, δ): -3.98 ppm; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₃₀BN₆O₂⁺, 517.2518; found, 517.2518; [2M+H]⁺ calcd for C₆₀H₅₉B₂N₁₂O₄⁺, 1033.4963; found, 1033.4976. **B3**. Yellow solid (yield: 6%, using 50 : 1 of CH₂Cl₂ and methanol as the eluent). ¹H NMR (400 MHz, CD₂Cl₂, δ): 8.79 (s, 1H), 7.92 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.80–7.76 (m, 2H), 7.63 (d, J = 8.6 Hz, 1H), 7.46 (d, J = 9.1 Hz, 1H), 7.28–7.20 (m, 3H), 4.29 (t, J = 7.2 Hz, 2H), 3.04 (s, 6H), 1.92–1.85 (m, 2H), 1.31–1.22 (m, 2H), 0.84 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CD₂Cl₂, δ): 161.6, 158.0, 157.6, 154.7, 153.6, 150.8, 135.8, 134.5, 133.6, 122.5, 120.9, 119.2, 119.1, 109.4, 108.2, 49.6, 41.7, 32.3, 20.1, 13.6 ppm; ¹¹B NMR (225 MHz, CD₂Cl₂, δ): 37.60 ppm; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₆BN₄O₂⁺, 437.2143; found, 437.2159; [2M+H]⁺ calcd for C₅₂H₅₁B₂N₈O₄⁺, 873.4214; found, 873.4236.

Synthesis of compound B2

DMF (25 mL) was added to a mixture of 2-fluoro-4-methylpyridine (72 μ L, 1.9 mmol), K₂CO₃ (0.16 g, 1.2 mmol) and 7a (0.24 g, 0.58 mmol) at room temperature under a N₂ atmosphere. The reaction mixture was stirred at 150 °C for 24 h, and then cooled to room temperature. After addition of CH₂Cl₂ and water, the organic layer was washed with water twice, and then condensed in vacuo. The reaction mixture was purified by flash chromatography on silica gel with CH₂Cl₂ / methanol (100 : 1) as eluent to give B2 (0.38 g, 92%) as a white solid. ¹H NMR (400 MHz, CD₂Cl₂, δ): 7.91 (d, *J* = 4.7 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.38 (s, 1H), 7.32 (s,

1H), 7.26 (s, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.07–7.00 (m, 3H), 6.86 (d, J = 4.6 Hz, 1H), 6.81 (s, 1H), 6.72 (d, J = 8.2 Hz, 1H), 3.77 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.66–1.59 (m, 2H), 1.14–1.05 (m, 2H), 0.70 ppm (t, J = 7.3 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃, δ): 165.1, 161.6, 157.7, 157.6, 155.5, 153.9, 151.6, 148.9, 147.4, 147.1, 137.3, 131.8, 130.8, 127.0, 123.1, 120.0, 118.5, 117.5, 116.5, 111.9, 110.0, 109.3, 49.9, 31.6, 21.3, 19.9, 13.4 ppm; ¹¹B NMR (225 MHz, CDCl₃, δ): –5.02 ppm; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₆BN₄O₃⁺, 501.2092; found, 501.2122; [M+H]⁺ calcd for C₆₀H₅₁B₂N₈O₆⁺, 1001.4112; found, 1001.4083.

Synthesis of compound B4

To a Schlenk flask equipped with a magnetic stir bar was added 9a (52 mg, 0.16 mmol), 1azidohexane (67 mg, 0.51 mmol), NEti-Pr₂ (0.11 mL, 0.64 mmol), tris[(1-benzyl-1H-1,2,3triazol-4-yl) methyl]amine (1 mol %) and CH₂Cl₂ (10 mL). The resulting solution was bubbled with N₂ for 20 minutes. [Cu(CH₃CN)₄]PF₆ (1 mol %) was added as a catalyst. The resulting mixture was stirred overnight, after which the solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂ and washed with saturated NH₄Cl and brine. The organic layer was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using CH_2Cl_2 / ethyl acetate (5 : 1) as eluent to give a pale yellow solid in 48% yield. ¹H NMR (400 MHz, $CDCl_3$, δ): 9.18 (s, 2H), 8.15 (dd, J = 8.7, 2.0 Hz, 2H), 7.94 (s, 2H), 7.79 (t, J = 8.2 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 4.46 (d, J = 14.6 Hz, 4H), 2.06–1.98 (m, 4H), 1.45–1.32 (m, 12H), 0.90 ppm (t, J = 7.0 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃, δ): 160.4, 157.4, 147.5, 135.0, 131.7, 131.5, 125.6, 119.7, 119.1, 108.8, 50.7, 31.4, 30.5, 26.4, 22.6, 14.1 ppm; ¹¹B NMR (225 MHz, CDCl₃, δ): -3.32 ppm; HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{34}H_{38}BN_6O_2^+$, 573.3144; found, 573.3151; $[2M+H]^+$ calcd for $C_{68}H_{75}B_2N_{12}O_4^+$, 1145.6215; found, 1145.6259.

Synthesis of compound B5

Prepared using the same procedure as compound **B4** except replacing 1-azidohexane with 1,12diazidododecane (14% yield). ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.24 (s, 2H), 8.22 (d, *J* = 8.7 Hz, 2H), 8.08 (s, 2H), 7.85 (t, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 4.48 (t, *J* = 6.9 Hz, 4H), 2.07–1.99 (m, 4H), 1.43–1.35 ppm (m, 16H); ¹³C NMR (176 MHz, CD₂Cl₂, δ): 160.8, 157.7, 147.0, 135.5, 131.9, 120.5, 119.4, 109.1, 50.8, 30.2, 28.4, 28.4, 28.2, 26.0 ppm; ¹¹B NMR (225 MHz, CD₂Cl₂, δ): 39.15 ppm; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₄H₃₆BN₆O₂⁺, 571.2987; found, 571.2997.

S2 Photophysical and electrochemical properties

Fig. S1. Normalized emission spectra of **B1–B5** at a) 298 K in toluene solution, b) at 77 K in toluene matrix, c) as solid at 298 K and d) as crystal at 298 K.

Fig. S2. Normalized fluorescence (298 K, 0.01 mM in CH_2Cl_2 and 77 K, 1 mM in CH_2Cl_2) and phosphorescence (77 K, 1 mM in CH_2Cl_2 , 100 µs delay) spectra of **B1–B5**.

Fig. S3. a) Cyclic voltammogram (CV) diagrams of **B1–B5** showing the reduction (recorded in THF) and oxidation waves (recorded in CH_2Cl_2) using NBu_4NPF_6 (0.1 M) as the electrolyte with a scan rate = 100 mV s⁻¹, the reduction and oxidation waves of **B3** recorded in CH_2Cl_2 ; b) Experimental HOMO and LUMO energy levels (eV) obtained by differential pulse voltammetry (DPV).

compound	$\lambda_{abs}^{a)}$ (nm)	\mathcal{E} (M^{-1} c m^{-1})	$\lambda_{\rm em}{}^{\rm a)}$ (nm)	$\Phi_{\text{F}}{}^{\text{b)}}$	Stokes shift ^{c)} (10 ³ cm ⁻¹)	$ au_{\mathrm{F}}^{\mathrm{d})}$ (ns)	Eg ^{e)} (eV)	HOMO ^{f)} /LUMO ^{g)} (eV)
B1	390	11733	405	0.53	0.95	8.19	3.07	-5.89/-2.50
B2	391	16051	410	0.64	1.19	7.67	3.05	-5.71/-2.49
B3	430	5493	514	0.71	3.80	19.0	2.57	-5.04/-2.46
B4	398	16461	410	0.60	0.74	7.22	3.02	-5.82/-2.51
B5	398	9517	409	0.52	0.68	6.48	3.02	-5.73/-2.47

Table S1. Photophysical properties of B1-B5.

^{a)} In toluene (0.01 × 10⁻³ M); ^{b)} Determined by an absolute quantum yields spectrometer; ^{d)} Stokes shift = $1/\lambda_{abs} - 1/\lambda_{em}$; ^{d)} Fluorescence lifetime measured at an emission maxima on excitation at 365 nm picosecond pulsed LED; ^{e)} Estimated from absorption edges of UV–vis spectra; ^{f)} Determined from the oxidation peaks in DPV diagrams recorded in CH₂Cl₂; ^{g)} Determined from the reduction peaks in DPV diagrams recorded in THF.

		Fluorescence			_	Phosphorescence			
Compound	$T(\mathbf{K})$	$\lambda_{\rm em}^{\rm a)}$	au ^{b)}	$E_{\rm S}^{\rm c)}$		$\lambda_{\rm em}^{\rm d}$	$ au^{ m e)}$	$E_{\rm T}^{\rm \ c)}$	$\Delta E_{\rm ST}^{\ c)}$
		[nm]	[ns]	[eV]		[nm]	[s]	[eV]	[eV]
B 1	298	409	8.7	3.03		_	_	_	0.21
	77	390	6.0	_		439	0.96	2.82	0.21
B2	298	414	9.7	3.00		_	_	_	0.15
	77	405	8.9	_		435	0.67	2.85	0.13
B3	298	535	11.2	2.32		_	_	_	0.11
	77	495	9.4	_		560	0.40	2.21	0.11
B4	298	413	8.0	3.00		_	_	_	0.47
	77	491	270.4	_		490	2.70	2.53	0.47
B5	298	413	8.0	3.00		_	_	_	0.24
	77	457	34.2	_		467	1.74	2.66	0.34

Table S2. Photophysical properties of B1–B5 in CH₂Cl₂ under 77 K and 298 K.

^{a)} Maximum wavelength of emission; ^{b)} Fluorescence lifetime measured with 365 nm picosecond pulsed LED; ^{c)} Singlet and triplet energies estimated from the emission maxima, $E_{S/T} = 1240/\lambda_{em, max}$, $\Delta E_{ST} = E_S - E_T$; ^{d)} Phosphorescence spectra were obtained at 77 K with a 100 µs delay time; ^{e)} Phosphorescence lifetime.

 Table S3. Electrochemical data for compound B1–B5^a at 298 K

			real real real real real real real real				
	$E_{\rm red}^{\rm CV, c}$	$E_{\rm red}^{\rm DPV, d}$	$E_{\rm ox}^{\rm CV, e}$	$E_{ m ox}^{ m DPV, f}$	$E_{\rm LUMO}{}^{\rm g}$	$E_{\rm HOMO}{}^{\rm g}$	E_{g}^{h}
	(V)	(V)	(V)	(V)	(eV)	(eV)	(eV)
B1	-2.24	-2.30	+1.17, +1.43	+1.09, +1.35	-2.50	-5.89	3.39
B2	-2.30	-2.31	+0.99, +1.33	+0.91, +1.22	-2.49	-5.71	3.22
B3 ^b	-2.33	-2.34	+0.27	+0.24	-2.46	-5.04	2.58
B4	-2.33	-2.29	+1.09, +1.25, +1.52	+1.02, +1.24	-2.51	-5.82	3.31
B5	-2.29	-2.33	+1.03, +1.11, +1.48	+0.93, +1.02	-2.47	-5.73	3.26

^{a)} All potentials are relative to Fc/Fc^+ couple, oxidative scan in CH_2Cl_2 and reductive scan in THF, 0.1 M NBu₄NPF₆ as supporting electrolyte at room temperature; ^{b)} Redox peaks measured in CH_2Cl_2 ; ^{c)} Reduction potentials from cyclic voltammetry (CV), scan rate: 100 mV s⁻¹; ^{d)} Peak potentials determined by the reduction peak positions from differential pulse voltammetry

(DPV), scan rate: 50 mV s⁻¹; ^{e)} Oxidation potentials from CV, scan rate: 100 mV s⁻¹; ^{f)} Peak potentials determined by the first oxidation peak positions from DPV, scan rate: 50 mV s⁻¹; ^{g)} The HOMO and LUMO energy levels are obtained by DPV, $E_{LUMO}/E_{HOMO} = -(4.8 + E_{red}^{DPV}/E_{ox}^{DPV})$; ^{h)} The energy gap corresponds to the electrochemical energy gap, $E_g = E_{LUMO} - E_{HOMO}$.

Fig. S4. a) UV-vis absorption and b) emission titrations of 5.0×10^{-5} M solution of **B4** in CH₂Cl₂ with TBAF. Photographs showing the emission colors of **B4** and **B4•F**⁻ under irradiated with 365 nm UV light.

Fig. S5. a) UV-vis absorption and b) emission titrations of 1.0×10^{-5} M solution of **B4** in CH₂Cl₂ with pyridine. Photographs showing the emission colors of **B4** and **B4•Pyridine** under irradiated with 365 nm UV light.

Fig. S6. a) The UV-vis absorption and b) emission titrations of 5.0×10^{-5} M solution of **B5** in CH₂Cl₂ with TBAF.

Fig. S7. a) UV-vis absorption and b) emission titrations of $1.0 \ge 10^{-5}$ M solution of **B5** in CH₂Cl₂ with pyridine.

Fig. S8. Temperature-dependent fluorescence spectra of B2 a), B3 b) and B4 c) in mesitylene (0.01 mM) under N₂.

Fig. S9. a) Normalized fluorescence intensity of **B1** (blue circle) monitored at the emission maximum under the reversible emission tuning experiments in mesitylene solution. Black solid and red dashed lines denote that reversible cycling of **B1** emission between 230 K (at 408 nm) and 410 K (at 404 nm); b) The change of transient decay lifetime of **B1**, **B2**, **B3**, **B4** and **B5** in mesitylene solution (0.01 mM) between 200 K and 420 K.

S3 Temperature-dependent NMR Studies

Fig. S10. Variable temperature ¹H NMR spectra of **B1** (400 MHz, toluene- d_8) between 298 K and 333 K: a) full and b) aromatic region, * denote the solvent residual signals.

Fig. S11. Aromatic region of variable temperature ¹H NMR spectra of **B1** (500 MHz, CD₂Cl₂) between 243 K and 308 K.

Fig. S12. Variable temperature ¹¹B NMR spectra of **B1** (161 MHz, CD₂Cl₂) between 243 K and 308 K.

Fig. S13. Variable temperature ¹H NMR spectra of **B2** (400 MHz, toluene- d_8) between 298 K and 363 K: a) full and b) aromatic region, * denote the solvent residual signals.

298 K

Fig. S14. Variable temperature ¹¹B NMR spectra of B2 (128 MHz, toluene- d_8) between 298 K and 363 K.

Fig. S15. The aromatic region of the COSY NMR spectrum of B2 in CD_2Cl_2 with the 1D spectral assignment.

Fig. S16. Variable temperature ¹H NMR spectra of **B3** (400 MHz, CD₂Cl₂) between 233 K and 298 K: a) full and b) aromatic region.

Fig. S17. Variable temperature ¹¹B NMR experiments for **B3** (128 MHz, CD₂Cl₂) between 233 K and 298 K.

Fig. S18. Aromatic region of the variable temperature ¹H NMR experiments for **B4** (500 MHz, CDCl₃) between 243 K and 323 K.

Fig. S19. Variable temperature ¹¹B NMR spectra of **B4** (161 MHz, CDCl₃) between 243 K and 323 K.

S4 Mechanoresponsive emission properties

Fig. S20. a) Emission spectra of **B1** with unground (black line), ground (red line), ground **B1** treated with DCM (blue line) and ground **B1** after heating at 130 °C for 5 min (green line), respectively; b) Powder XRD patterns of **B1** with unground, ground, ground **B1** treated with DCM and ground **B1** after heating at 130 °C for 5 min, respectively. (The photographs show the fluorescence color in the crystalline state (left) and as amorphous film (right)).

Fig. S21. Normalized emission spectra of **B3** as pristine crystalline solid and ground powder. (The photographs show the fluorescence color in the crystalline state (left) and as amorphous film (right)).

Fig. S22. a) Emission spectra change of **B4** with unground (black line), ground (red line), ground **B4** treated with DCM (blue line) and ground **B4** after heating at 150 °C for 5 min (green line), respectively; b) Powder XRD patterns (right) of **B4** with unground, ground, ground **B4** treated with DCM and ground **B4** after heating at 150 °C for 5 min, respectively. (The photographs show the fluorescence color in the crystalline state (left) and as amorphous film (right)).

Fig. S23. a) Temperature-dependent transient decay spectra of B5 as amorphous film; b)

Powder XRD patterns of **B5** as pristine crystalline solid, ground powder, recrystallized solid, and annealed solid after heating at 130 °C for 5 min, respectively; c) Normalized fluorescence intensity of **B5** (blue circle) monitored at the emission maximum under the reversible emission tuning experiments. Black solid and red dashed lines denote that reversible cycling of **B5** emission between 298 K (at 473 nm) and 400 K (at 437 nm).

Fig. S24. Transient decay spectra of **B1–B5** with unground (black line), ground (red line), ground compounds treated with solvent (blue line) and ground compounds after heating for 5 min (green line), respectively.

a a man d	Tolue K	ne, 77 ^(a)	5 w.ť	% PMN 298 K	MA,	Ungro	ound pov	wder	Gro pow	ound vder
compa -	λ_{em} (nm)	τ (ns) ^{b)}	$\lambda_{\rm em}$ (nm)	τ (ns)	$\Phi_F{}^{\rm c)}$	 $\lambda_{\rm em}$ (nm)	τ (ns)	$\Phi_{\rm F}{}^{\rm c)}$	$\lambda_{\rm em}$ (nm)	τ (ns)
B1	396	8.15	407	9.83	0.75	404	7.13	0.65	448	22.44
B2	388	N.d.	416	9.92	0.73	390	3.96	0.66	467	21.17
B3	473	3.18	497	52.0	0.51	507	16.91	0.45	573	16.14
B4	419	10.29	423	7.08	0.06	459	8.84	0.03	480	31.75
B5	408	8.04	422	4.65	0.15	435	4.91	0.15	473	42.86

Table S4. Photophysical properties of B1–B5 in the different states.

^{a)} In toluene (0.05 mM) at 77 K; ^{b)} Fluorescence lifetime measured at a maximum λ_{max} on excitation at 365 nm picosecond pulsed LED; ^{c)} Determined by an absolute quantum yields spectrometer; N.d. = Not determined.

S5 DFT/TD-DFT Computational data

DFT and TD-DFT calculations were performed using the Gaussian 09 suite of programs^[1] on the High Performance Computing Virtual Laboratory (HPCVL) at Queen's University. Geometry optimizations and vertical excitations of all compounds were obtained at the B3LYP/6-31g(d)^[2,3] level of theory.

Fig. S25. TD-DFT calculated $S_0 \rightarrow S_1$ transition energies (eV), oscillator strength (*f*), and orbital diagrams for **B1–B5** (isovalue = 0.03, B3LYP / 6-31G(d)).

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength	
	S ₁	HOMO \rightarrow LUMO (98%)	378.87 (3.27)	0.1974	
	S ₂	HOMO-1 → LUMO (97%)	319.90 (3.88)	0.0002	
	S ₃	HOMO \rightarrow LUMO+1 (93%)	295.21 (4.20)	0.0975	
		HOMO-2 → LUMO (63%)			
	S ₄	HOMO \rightarrow LUMO+2 (20%)	290.68 (4.27)	0.0079	
		HOMO-3 → LUMO (12%)			
		HOMO-3 \rightarrow LUMO (43%)			
	S_5	HOMO-2 \rightarrow LUMO (31%)	287.08 (4.32)	0.0269	
B1		HOMO \rightarrow LUMO+2 (23%)			
		HOMO \rightarrow LUMO+2 (46%)		0.8506	
	S ₆	HOMO-3 \rightarrow LUMO (33%)	272.43 (4.55)		
		HOMO-4 \rightarrow LUMO (14%)			
	S ₇	HOMO-4 \rightarrow LUMO (81%)	269.94 (4.59)	0.3896	
	S ₈	HOMO \rightarrow LUMO+3 (80%)	264.42 (4.69)	0.0199	
	S	HOMO-1 → LUMO+1 (36%)	254.00 (4.86)	0.2050	
	59	$HOMO-1 \rightarrow LUMO+2 (44\%)$	234.99 (4.80)	0.3939	
	S ₁₀	HOMO-5 → LUMO (80%)	253.29 (4.89)	0.0165	

Table S5 TD-DFT calculated electronic transitions for **B1** along with their corresponding excitation energies and oscillator strengths.

Table S6 Primary orbitals which contribute to the calculated transitions of B1 (iso = 0.03).

X		
HOMO-4	HOMO-5	

 Table S7 TD-DFT calculated electronic transitions for B2 along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S ₁	HOMO \rightarrow LUMO (98%)	380.33 (3.26)	0.2136
	S ₂	HOMO-1 → LUMO (96%)	318.68 (3.89)	0.0003
	S ₃	HOMO-2 → LUMO (91%)	296.58 (4.18)	0.0344
	G	HOMO \rightarrow LUMO+1 (81%)	202 10 (4 24)	0.0202
		HOMO-3 \rightarrow LUMO (9%)	292.19 (4.24)	0.0892
	G	HOMO-3 \rightarrow LUMO (68%)	282 42 (4 27)	0 1067
	35	HOMO \rightarrow LUMO+2 (14%)	285.42 (4.57)	0.1067
		HOMO \rightarrow LUMO+2 (25%)		0.1824
	S_6	HOMO-3 \rightarrow LUMO (9%)	273.19 (4.54)	
B2		HOMO-4 \rightarrow LUMO (51%)		
		HOMO-4 \rightarrow LUMO (36%)		
	S ₇	HOMO-5 \rightarrow LUMO (25%)	270.96 (4.57)	
		HOMO \rightarrow LUMO+2 (30%)		
	G	HOMO-5 \rightarrow LUMO (64%)	267 66 (4 62)	0.1006
	38	HOMO \rightarrow LUMO+2 (20%)	207.00 (4.03)	0.1990
	G	HOMO \rightarrow LUMO+3 (65%)	262.08 (4.71)	0.048
	S9	HOMO \rightarrow LUMO+4 (17%)	202.96 (4.71)	0.048
	C	HOMO \rightarrow LUMO+4 (50%)	257 72 (4.91)	0.240
	S_{10}	$HOMO-1 \rightarrow LUMO+1 (16\%)$	237.73 (4.81)	0.249

A A A A A A A A A A A A A A A A A A A		AT A A A A A A A A A A A A A A A A A A	
LUMO+4	LUMO+3	LUMO+2	LUMO+1
LUMO	НОМО	HOMO-1	НОМО-2
	and the second s		
НОМО-3	HOMO-4	НОМО-5	

Table S8 Primary orbitals which contribute to the calculated transitions of **B2** (iso = 0.03).

Table S9 TD-DFT calculated electronic transitions for **B3** along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S ₁	HOMO \rightarrow LUMO (99%)	444.26 (2.79)	0.1383
	S ₂	HOMO-1 \rightarrow LUMO (97%)	344.69 (3.60)	0.0719
	S ₃	HOMO \rightarrow LUMO+1 (99%)	332.93 (3.72)	0.0226
	G	HOMO \rightarrow LUMO+2 (82%)	201.02 (4.12)	0.0146
D2		HOMO-2 → LUMO (11%)	501.05 (4.12)	
ВЭ		HOMO-2 \rightarrow LUMO (71%)		0.0298
	S ₅	HOMO \rightarrow LUMO+2 (13%)	292.34 (4.24)	
		HOMO \rightarrow LUMO+3 (13%)		
	G	HOMO-3 → LUMO (60%)	284.00 (4.26)	0.0153
	\mathbf{b}_{6}	HOMO \rightarrow LUMO+3 (28%)	284.09 (4.30)	

		HOMO-1 \rightarrow LUMO+1 (41%)			
	S_7	HOMO \rightarrow LUMO+3 (32%)	280.99 (4.41)	0.1189	
		HOMO-3 \rightarrow LUMO (15%)			
	S ₈	HOMO-4 \rightarrow LUMO (72%)		0.2641	
		HOMO \rightarrow LUMO+3 (10%)	271.44 (4.57)	0.2041	
	S ₉	HOMO-1 \rightarrow LUMO+1 (41%)		0.7912	
		HOMO-4 \rightarrow LUMO (20%)	264.34 (4.69)		
		HOMO \rightarrow LUMO+4 (19%)			
	S ₁₀	HOMO \rightarrow LUMO+4 (74%)	260.35 (4.76)	0.696	

Table S10 Primary orbitals which contribute to the calculated transitions of **B3** (iso = 0.03).

	THE PART		
LUMO+4	LUMO+3	LUMO+2	LUMO+1
LUMO	НОМО	HOMO-1	НОМО-2
НОМО-3	HOMO-4		

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S_1	HOMO \rightarrow LUMO (98%)	388.81 (3.18)	0.2038
	S ₂	HOMO-1 \rightarrow LUMO (97%)	333.75 (3.72)	0.0026
	S ₃	HOMO \rightarrow LUMO+1 (94%)	297.24 (4.17	0.0743
	S ₄	HOMO-2 → LUMO (94%)	291.35 (4.27)	0.0158
	G	HOMO \rightarrow LUMO+2 (48%)	280.08 (4.28)	0.0401
	35	HOMO-3 → LUMO (47%)	289.98 (4.28)	0.0491
		HOMO-3 → LUMO (18%)		0.4244 0.5268
	G	HOMO \rightarrow LUMO+2 (35%)		
B4	56	HOMO \rightarrow LUMO+3 (33%)	274.09 (4.31)	
		HOMO-1 → LUMO+1 (11%)		
		HOMO \rightarrow LUMO+2 (14%)		
	S_7	HOMO \rightarrow LUMO+3 (53%)	271.99 (4.56)	
		HOMO-3 → LUMO (27%)		
	S ₈	HOMO-4 \rightarrow LUMO (95%)	271.88 (4.56)	0.2309
	S	HOMO-1 → LUMO+2 (72%)	250.88 (4.77)	0.1450
	59	HOMO \rightarrow LUMO+4 (14%)	239.88 (4.77)	0.1439
	S ₁₀	HOMO-1 → LUMO+1 (85%)	257.62 (4.81)	1.3444

Table S11 TD-DFT calculated electronic transitions for **B4** along with their corresponding excitation energies and oscillator strengths.

Table S12 Primary orbitals which contribute to the calculated transitions of B4 (iso = 0.03).

t t t t			+++**
LUMO	НОМО	HOMO-1	HOMO-2
THE REAL PROPERTY AND A DECEMBER OF A DECEMB			
HOMO-3	HOMO-4		

 Table S13 TD-DFT calculated electronic transitions for B5 along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S ₁	HOMO \rightarrow LUMO (98%)	377.84 (3.28)	0.1982
	S ₂	HOMO-1 \rightarrow LUMO (97%)	327.11 (3.79)	0.003
		HOMO \rightarrow LUMO+1 (49%)		
	S ₃	HOMO-2 \rightarrow LUMO (36%)	288.19 (4.30)	0.0404
		HOMO-3 \rightarrow LUMO (11%)		
		HOMO \rightarrow LUMO+1 (21%)		
D5	S_4	HOMO-2 \rightarrow LUMO (58%)	286.01 (4.33)	0.0326
DO		HOMO-3 \rightarrow LUMO (15%)		
		HOMO \rightarrow LUMO+1 (15%)		
	S ₅	HOMO \rightarrow LUMO+2 (37%)	284.15 (4.36)	0.0403
		HOMO-3 \rightarrow LUMO (39%)		
	S ₆	HOMO-4 \rightarrow LUMO (91%)	271.75 (4.56)	0.3324
	c	HOMO \rightarrow LUMO+2 (51%)	268 77 (4 61)	0.830
	37	HOMO \rightarrow LUMO+3 (10%)	200.77 (4.01)	0.039

	HOMO-3 \rightarrow LUMO (28%)		
G	HOMO \rightarrow LUMO+3 (70%)	262 24 (4 72)	0 1202
58	HOMO-1 \rightarrow LUMO+1 (11%)	202.34 (4.73)	0.1392
G	HOMO-1 \rightarrow LUMO+1 (44%)	252.02 (4.88)	0.2110
59	HOMO-1 \rightarrow LUMO+2 (41%)	255.92 (4.88)	0.2119
S ₁₀	HOMO-5 \rightarrow LUMO (35%)	249.65 (4.96)	0.3351

Table S14 Primary	y orbitals which	contribute to the	e calculated	transitions o	f B5 (iso = 0.0	3).
-------------------	------------------	-------------------	--------------	---------------	---------------	-----------	-----

Fig. S26. Predicted UV/Vis spectra of a) B1, b) B2, c) B3, d) B4 and e) B5 based on TD-DFT calculation.

S6¹H NMR, ¹³C NMR and ¹¹B NMR spectra for isolated compounds

Fig. S27. ¹H NMR spectrum of 1 (400 MHz, CDCl₃)

Fig. S30. ¹H NMR spectrum of 2a (400 MHz, CDCl₃)

Fig. S33. ¹H NMR spectrum of 4a (400 MHz, CDCl₃)

Fig. S42. ¹H NMR spectrum of 9a (400 MHz, CDCl₃)

Fig. S58. ¹¹B NMR spectrum of B5 (225 MHz, CD₂Cl₂)

S7 Crystal structure data

Table S15. X-Ray	y crystallographic	data and structure	refinement for	B1, B2 and B3
	j • journo Bruphile			21, 22 4114 20

Sample	B1	B2	B3
Empirical formula	$C_{60}H_{58}B_2N_{12}O_4$	C ₆₀ H ₅₀ B ₂ N ₈ O ₆	$C_{52}H_{50}B_2N_8O_4$
Formula weight	1032.82	1007.3	872.62
Temperature	180(2) K	180(2) K	180(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2 ₁ /n	P-1	P2(1)/n
	a = 13.825(7) Å	a = 11.763(3) Å	a = 10.2786(4) Å
	b = 12.616(6) Å	b = 13.803(4) Å	b = 12.3930(5) Å
Unit call dimonsions	c = 15.994(8) Å	c = 17.801(5) Å	c = 17.3660(6) Å
	$\alpha = 90^{\circ}$	$\alpha = 87.689(8)^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 91.612(16)^{\circ}$	$\beta = 88.933(8)^{\circ}$	$\beta = 92.5770(10)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 86.818(8)^{\circ}$	$\gamma = 90^{\circ}$
Volume	2788(2) Å ³	2883.0(13) Å ³	2209.89(15) Å ³
Ζ	56	4	4
Density (calculated)	1.306 Mg/m ³	1.251 Mg/m ³	1.311 Mg/m ³
Absorption coefficient	0.086 mm ⁻¹	0.170 mm ⁻¹	0.084 mm ⁻¹
F(000)	1160	1132	920
Theta range for data collection	2.186 to 27.158°	2.217 to 27.251°	2.259 to 27.572°
	-17<=h<=17	-15<=h<=15	-13<=h<=13
Index ranges	-16<=k<=16	-17<=k<=17	-16<=k<=14
	-20<=l<=20	-22<=l<=22	-22<=l<=22
Reflections collected	32732	37939	28172
Independent reflections	6158 [R(int) =	12722 [R(int) =	5095 [R(int) =
	0.1053]	0.1253]	0.0465]
Completeness to theta =	99.8 %	99.8 %	99.8 %

25.242°			
Absorption correction	Semi-empirical from	equivalents	
Max/min transmission	0.759 / 0.650	0.756 / 0.654	0.756 / 0.654
Refinement method	Full-matrix least-squa	res on F ²	
Data/restraints/parameters	6158 / 0 / 374	12722 / 0 / 726	5095 / 20 / 298
Goodness-of-fit on F ²	1.032	0.999	1.165
Final R indices	R1 = 0.0568	R1 = 0.0886	R1 = 0.0582
[I>2sigma(I)]	wR2 = 0.1287	wR2 = 0.2147	wR2 = 0.1798
D indiana (all data)	R1 = 0.0901	R1 = 0.2055	R1 = 0.0853
K malces (all data)	wR2 = 0.1443	wR2 = 0.2557	wR2 = 0.2008
Extinction coefficient	n/a	n/a	n/a
Largest diff. peak and hole (e.Å ⁻³)	0.505 and -0.294	0.359 and -0.387	0.887 and -0.429

Table 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for dimer **B1**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
B(1)	6441(2)	6771(2)	4700(1)	23(1)
C(1)	5928(1)	5812(2)	4183(1)	22(1)
N(1)	5635(1)	2110(1)	4071(1)	27(1)
O(1)	5560(1)	7059(1)	3038(1)	35(1)
C(2)	5498(1)	6062(2)	3402(1)	27(1)
N(2)	5328(1)	1206(1)	4446(1)	30(1)
O(2)	8190(1)	8139(1)	4882(1)	34(1)
O(3)	7559(2)	3264(2)	5189(1)	63(1)
C(3)	4958(2)	5343(2)	2923(1)	33(1)
N(3)	4440(1)	2592(1)	4824(1)	22(1)
C(4)	4831(2)	4332(2)	3213(1)	31(1)
N(4)	8298(1)	4789(1)	7985(1)	31(1)
C(5)	5256(1)	4031(2)	3978(1)	23(1)
N(5)	8189(1)	3804(1)	8320(1)	37(1)
C(6)	5806(1)	4763(2)	4439(1)	23(1)
N(6)	7826(1)	3784(1)	6937(1)	31(1)
C(7)	7309(1)	6581(2)	5380(1)	23(1)
C(8)	7348(1)	5776(2)	5983(1)	23(1)
C(9)	8100(1)	5666(2)	6579(1)	25(1)
C(10)	8856(1)	6400(2)	6582(1)	31(1)
C(11)	8854(2)	7201(2)	6000(1)	32(1)
C(12)	8091(1)	7285(2)	5417(1)	26(1)
C(13)	6826(1)	7576(2)	4020(1)	24(1)

C(14)	7635(1)	8208(2)	4153(1)	27(1)
C(15)	7940(2)	8947(2)	3573(1)	34(1)
C(16)	7428(2)	9036(2)	2820(1)	35(1)
C(17)	6634(2)	8401(2)	2643(1)	33(1)
C(18)	6354(1)	7685(2)	3244(1)	27(1)
C(19)	5112(1)	2942(2)	4293(1)	23(1)
C(20)	4608(1)	1533(2)	4888(1)	26(1)
C(21)	6478(2)	2089(2)	3533(1)	37(1)
C(22)	6301(2)	1467(2)	2748(2)	52(1)
C(23)	5508(2)	1816(3)	2172(2)	62(1)
C(24)	5442(3)	1186(3)	1358(2)	77(1)
C(25)	8077(1)	4766(2)	7157(1)	26(1)
C(26)	7910(2)	3246(2)	7666(1)	35(1)
C(27)	8475(2)	5681(2)	8556(1)	36(1)
C(28)	7710(2)	5734(2)	9216(1)	39(1)
C(29)	6692(2)	5888(2)	8858(2)	50(1)
C(30)	5930(2)	5888(3)	9512(2)	74(1)
C(31)	8252(2)	3835(3)	4737(2)	69(1)

Table 2. Bond lengths [Å] and angles [°] for dimer **B1**.

B(1)-C(13)	N(2) 4C5(20) (3)	C(5) - C3(0)(3)	C(13)-693(3)	1.385(
B(1)-C(7)	O(2)+C((14(3)	C(5) - C3(89)(2)	C(13)-@7983)	1.393(
B(1)-C(1)	O(2)+C(612(3)	N(5)+C(86)2)	C(14)-E(063)	1.390(
B(1)-N(3)	O(3)4C662(3)	N(6)4C4(23)(4)	C(15)-£3(163)	1.385(
C(1)-C(6)	C(3)-C397(3)	N(6)4C3(26)(3)	C(16)-£\$173)	1.382(
C(1)-C(2)	N(3)4C4(09)(3)	C(7)-IC3(50)(2)	C(17)-G(983)	1.382(.
N(1)-C(19)	N(3)4C3(20)(2)	C(7)-IC3(89)(3)	C(21)- C (22))	1.495(3
N(1)-N(2)	N(3)-B(6)(2)	C(8)-C(6)(3)	C(22)-69883)	1.479(4
N(1)-C(21)	C(4)-IC469(3)	C(9) -IC396 (3)	C(23)-698(3)	1.526(4
O(1)-C(18)	N(4)4C3(84)(2)	C(9)-IC3(26)(2)	C(27)-€68 8))	1.516(.
O(1)-C(2)	N(4)-1N(89(2)	C(10)-663(2)	C(28)-67(293)	1.516(.
C(2)-C(3)	N(4)+C(22(3)	C(11)- C(723)	C(29)-692(3))	1.505(4
C(13)-B(1)-C(7)	107.42(16)	C(6)-C(1)-C(2)	115.00(17)	
C(13)-B(1)-C(1)	106.14(15)	C(6)-C(1)-B(1)	127.81(16)	
C(7)-B(1)-C(1)	122.74(16)	C(2)-C(1)-B(1)	117.08(16)	
C(13)-B(1)-N(3)#1	105.54(15)	C(19)-N(1)-N(2)	111.48(16)	
C(7)-B(1)-N(3)#1	107.67(14)	C(19)-N(1)-C(21)	128.16(18)	
C(1)-B(1)-N(3)#1	106.17(15)	N(2)-N(1)-C(21)	120.30(16)	

C(18)-O(1)-C(2)	118.37(15)	O(2)-C(12)-C(11)	112.74(17)
O(1)-C(2)-C(3)	113.48(16)	O(2)-C(12)-C(7)	123.92(17)
O(1)-C(2)-C(1)	123.13(17)	C(11)-C(12)-C(7)	123.35(18)
C(3)-C(2)-C(1)	123.38(18)	C(14)-C(13)-C(18)	115.86(17)
C(20)-N(2)-N(1)	102.99(16)	C(14)-C(13)-B(1)	123.13(17)
C(14)-O(2)-C(12)	120.51(15)	C(18)-C(13)-B(1)	121.01(17)
C(4)-C(3)-C(2)	119.47(18)	O(2)-C(14)-C(13)	121.40(17)
C(19)-N(3)-C(20)	104.43(16)	O(2)-C(14)-C(15)	115.73(18)
C(19)-N(3)-B(1)#1	131.02(16)	C(13)-C(14)-C(15)	122.87(18)
C(20)-N(3)-B(1)#1	124.52(15)	C(16)-C(15)-C(14)	118.5(2)
C(3)-C(4)-C(5)	119.72(18)	C(17)-C(16)-C(15)	121.03(19)
C(25)-N(4)-N(5)	110.01(16)	C(16)-C(17)-C(18)	118.22(19)
C(25)-N(4)-C(27)	131.06(17)	C(17)-C(18)-O(1)	116.30(17)
N(5)-N(4)-C(27)	118.17(16)	C(17)-C(18)-C(13)	123.43(19)
C(6)-C(5)-C(4)	119.62(18)	O(1)-C(18)-C(13)	120.26(17)
C(6)-C(5)-C(19)	120.77(16)	N(1)-C(19)-N(3)	107.40(17)
C(4)-C(5)-C(19)	119.61(17)	N(1)-C(19)-C(5)	124.33(17)
C(26)-N(5)-N(4)	102.08(16)	N(3)-C(19)-C(5)	128.25(17)
C(5)-C(6)-C(1)	122.73(17)	N(2)-C(20)-N(3)	113.70(18)
C(25)-N(6)-C(26)	102.96(17)	N(1)-C(21)-C(22)	112.84(19)
C(12)-C(7)-C(8)	114.57(17)	C(23)-C(22)-C(21)	117.8(2)
C(12)-C(7)-B(1)	119.53(16)	C(22)-C(23)-C(24)	113.7(3)
C(8)-C(7)-B(1)	125.86(17)	N(6)-C(25)-N(4)	109.18(17)
C(9)-C(8)-C(7)	123.75(18)	N(6)-C(25)-C(9)	124.38(17)
C(10)-C(9)-C(8)	118.66(18)	N(4)-C(25)-C(9)	126.44(18)
C(10)-C(9)-C(25)	122.73(17)	N(5)-C(26)-N(6)	115.8(2)
C(8)-C(9)-C(25)	118.58(17)	N(4)-C(27)-C(28)	111.09(19)
C(11)-C(10)-C(9)	119.84(18)	C(29)-C(28)-C(27)	113.65(18)
C(10)-C(11)-C(12)	119.82(19)	C(30)-C(29)-C(28)	113.4(2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

Table 3. Anisotropic displacement parameters (Å² x 10³) for dimer **B1**; the anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2hka* b* U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
B(1)	24(1)	23(1)	21(1)	2(1)	0(1)	-1(1)
C(1)	22(1)	26(1)	19(1)	1(1)	0(1)	1(1)
N(1)	25(1)	27(1)	29(1)	-1(1)	1(1)	1(1)

O(1)	39(1)	32(1)	32(1)	11(1)	-11(1)	-6(1)
C(2)	28(1)	26(1)	25(1)	5(1)	-1(1)	-1(1)
N(2)	31(1)	25(1)	33(1)	1(1)	-2(1)	2(1)
O(2)	34(1)	31(1)	35(1)	8(1)	-4(1)	-10(1)
O(3)	103(2)	48(1)	39(1)	-6(1)	-17(1)	9(1)
C(3)	37(1)	38(1)	24(1)	6(1)	-10(1)	-4(1)
N(3)	23(1)	23(1)	19(1)	1(1)	-3(1)	-2(1)
C(4)	33(1)	33(1)	25(1)	-2(1)	-6(1)	-6(1)
N(4)	38(1)	29(1)	25(1)	3(1)	-9(1)	-2(1)
C(5)	23(1)	25(1)	23(1)	-1(1)	2(1)	-1(1)
N(5)	47(1)	32(1)	31(1)	7(1)	-7(1)	-4(1)
C(6)	24(1)	27(1)	17(1)	0(1)	-1(1)	0(1)
N(6)	38(1)	27(1)	27(1)	0(1)	-3(1)	-1(1)
C(7)	24(1)	23(1)	23(1)	-2(1)	1(1)	1(1)
C(8)	24(1)	22(1)	22(1)	-2(1)	-2(1)	-2(1)
C(9)	28(1)	25(1)	22(1)	-1(1)	-3(1)	1(1)
C(10)	25(1)	37(1)	30(1)	1(1)	-7(1)	-2(1)
C(11)	26(1)	35(1)	35(1)	1(1)	-2(1)	-8(1)
C(12)	28(1)	25(1)	26(1)	2(1)	0(1)	-1(1)
C(13)	28(1)	22(1)	24(1)	2(1)	2(1)	2(1)
C(14)	27(1)	26(1)	28(1)	2(1)	2(1)	1(1)
C(15)	31(1)	29(1)	41(1)	6(1)	6(1)	-2(1)
C(16)	42(1)	29(1)	35(1)	12(1)	10(1)	3(1)
C(17)	38(1)	34(1)	27(1)	8(1)	2(1)	5(1)
C(18)	30(1)	25(1)	27(1)	3(1)	1(1)	3(1)
C(19)	22(1)	26(1)	19(1)	-2(1)	-5(1)	-2(1)
C(20)	28(1)	25(1)	24(1)	2(1)	-4(1)	0(1)
C(21)	29(1)	41(1)	42(1)	-1(1)	8(1)	4(1)
C(22)	47(2)	60(2)	50(1)	-11(1)	18(1)	-2(1)
C(23)	50(2)	84(2)	52(2)	-16(2)	6(1)	-12(2)
C(24)	88(2)	93(2)	50(2)	-17(2)	8(2)	-31(2)
C(25)	24(1)	29(1)	24(1)	0(1)	-5(1)	2(1)
C(26)	40(1)	30(1)	33(1)	3(1)	-2(1)	-2(1)
C(27)	45(1)	36(1)	27(1)	-5(1)	-12(1)	-4(1)
C(28)	48(1)	41(1)	29(1)	-2(1)	-10(1)	0(1)
C(29)	46(2)	55(2)	48(1)	2(1)	-8(1)	-2(1)
C(30)	52(2)	75(2)	94(2)	17(2)	11(2)	3(2)
C(31)	76(2)	88(2)	42(2)	-12(2)	1(1)	25(2)

	Х	У	Z	U(eq)	
H(3A)	7652	3370	5704	95	
H(3)	4679	5551	2398	40	
H(4)	4455	3838	2895	37	
H(6)	6112	4538	4948	27	
H(8)	6835	5276	5987	27	
H(10)	9371	6346	6986	37	
H(11)	9371	7696	5996	39	
H(15)	8488	9383	3690	40	
H(16)	7625	9541	2418	42	
H(17)	6289	8455	2122	40	
H(20)	4235	1075	5222	31	
H(21A)	7034	1776	3849	45	
H(21B)	6652	2825	3384	45	
H(22A)	6908	1467	2433	62	
H(22B)	6171	723	2908	62	
H(23A)	5603	2574	2038	74	
H(23B)	4887	1750	2461	74	
H(24A)	6070	1197	1090	115	
H(24B)	4951	1506	982	115	
H(24C)	5261	452	1479	115	
H(26)	7774	2509	7703	42	
H(27A)	8473	6351	8234	43	
H(27B)	9121	5600	8833	43	
H(28A)	7731	5070	9546	47	
H(28B)	7866	6327	9602	47	
H(29A)	6662	6569	8551	60	
H(29B)	6547	5314	8451	60	
H(30A)	5933	5202	9800	111	
H(30B)	5294	6008	9243	111	
H(30C)	6068	6454	9917	111	
H(31A)	8538	4389	5094	103	
H(31B)	7937	4160	4244	103	
H(31C)	8761	3350	4558	103	

Table 4. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for dimer **B1**.

The ORTEP diagram showing the structure of dimer **B1** with labeling schemes

Table 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for dimer **B2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
C(1)	3333(3)	7863(3)	10492(2)	39(1)	
Cl(1)	6288(1)	8463(1)	3217(1)	96(1)	
O(1)	2112(2)	6816(2)	9864(2)	51(1)	
N(1)	8619(3)	6362(3)	11755(2)	55(1)	
B(1)	4316(4)	7010(3)	10558(2)	35(1)	
C(2)	2312(4)	7731(3)	10158(2)	45(1)	
Cl(2)	6169(2)	6384(1)	3224(1)	152(1)	
O(2)	4468(3)	9024(2)	11060(2)	56(1)	
N(2)	6168(3)	4852(2)	7873(2)	45(1)	

B(2)	3940(4)	917(3)	3599(2)	37(1)
N(3)	6932(3)	4140(3)	7648(2)	51(1)
C(3)	1440(4)	8437(3)	10061(2)	60(1)
O(3)	8633(3)	7110(2)	10571(2)	56(1)
O(4)	6143(3)	818(2)	2810(1)	51(1)
C(4)	1619(5)	9338(4)	10317(3)	68(1)
N(4)	6020(3)	3694(2)	8702(2)	37(1)
N(5)	326(3)	830(3)	5661(2)	51(1)
C(5)	2665(4)	9542(3)	10648(3)	58(1)
O(5)	2206(3)	1918(2)	2612(2)	62(1)
O(6)	1251(3)	2254(2)	5645(2)	57(1)
C(6)	3471(4)	8786(3)	10734(2)	44(1)
N(6)	6740(3)	1745(2)	6286(2)	43(1)
N(7)	6764(3)	1584(3)	7043(2)	51(1)
C(7)	5477(3)	7505(3)	10702(2)	36(1)
N(8)	6370(3)	242(2)	6472(2)	35(1)
C(8)	5450(4)	8469(3)	10940(2)	48(1)
C(9)	6457(5)	8942(3)	11072(3)	69(1)
C(10)	7490(4)	8499(4)	10969(3)	66(1)
C(12)	6592(4)	7075(3)	10603(2)	40(1)
C(11)	7549(4)	7547(3)	10726(2)	47(1)
C(13)	4153(3)	6359(3)	9826(2)	35(1)
C(15)	2761(4)	5686(3)	8998(2)	47(1)
C(14)	3027(4)	6291(3)	9562(2)	41(1)
C(17)	4716(3)	5200(3)	8862(2)	36(1)
C(16)	3610(4)	5135(3)	8648(2)	42(1)
C(18)	4983(3)	5811(3)	9431(2)	35(1)
C(19)	9087(4)	6424(3)	11080(2)	48(1)
C(20)	9995(4)	5861(3)	10822(3)	56(1)
C(21)	10480(4)	5159(4)	11291(3)	56(1)
C(23)	9107(5)	5672(4)	12213(3)	71(2)
C(22)	10027(5)	5061(4)	12013(3)	72(2)
C(24)	11482(5)	4494(4)	11054(3)	89(2)
C(25)	5626(3)	4597(3)	8497(2)	35(1)
C(26)	6794(4)	3448(3)	8159(2)	47(1)
C(27)	6100(5)	5786(4)	7439(2)	67(1)
C(28)	5476(7)	5673(6)	6708(4)	136(3)
C(29)	5686(9)	6332(7)	6131(4)	169(4)
C(30)	5389(11)	6249(6)	5399(4)	202(6)

C(31)	4129(4)	1302(3)	2758(2)	42(1)
C(32)	5214(4)	1198(3)	2409(2)	45(1)
C(33)	5410(4)	1447(3)	1657(2)	52(1)
C(34)	4489(5)	1804(3)	1241(2)	55(1)
C(35)	3426(5)	1949(3)	1558(2)	58(1)
C(36)	3274(4)	1721(3)	2317(2)	45(1)
C(37)	2795(3)	1496(3)	3914(2)	38(1)
C(38)	2063(4)	1955(3)	3399(2)	48(1)
C(39)	1042(4)	2477(4)	3609(3)	68(1)
C(40)	776(4)	2548(4)	4347(3)	63(1)
C(41)	1500(4)	2129(3)	4879(2)	50(1)
C(42)	2481(3)	1615(3)	4674(2)	43(1)
C(43)	5133(3)	932(2)	4019(2)	31(1)
C(44)	6122(4)	825(3)	3591(2)	40(1)
C(45)	7214(4)	733(3)	3892(2)	47(1)
C(46)	7335(4)	743(3)	4651(2)	44(1)
C(47)	6382(3)	892(2)	5113(2)	31(1)
C(48)	5320(3)	989(2)	4796(2)	33(1)
C(49)	693(4)	1548(3)	6035(3)	52(1)
C(50)	504(4)	1686(4)	6795(3)	62(1)
C(51)	-73(4)	1029(5)	7196(3)	76(2)
C(52)	-483(4)	238(4)	6829(3)	71(1)
C(53)	-247(4)	169(4)	6066(3)	58(1)
C(54)	-372(6)	1152(6)	8025(3)	117(3)
C(55)	6507(3)	937(3)	5936(2)	36(1)
C(56)	6544(4)	676(3)	7137(2)	45(1)
C(57)	6907(4)	2718(3)	5951(2)	49(1)
C(58)	8097(4)	3013(3)	5985(3)	63(1)
C(59)	8279(6)	4020(4)	5686(4)	83(2)
C(60)	9279(8)	4442(6)	5862(5)	97(3)
C(61)	6362(7)	7405(4)	2733(4)	118(3)
C(60A)	8020(20)	4370(20)	5054(16)	135(10)

Table 2. Bond lengths [Å] and angles $[\circ]$ for dimer **B2**.

O(1)-C(14)	O(4)-LC344(5)	C(10)-GQ1(4)	C(37)-G9386)	1.379(5)
O(1)-C(2)	C(4)-C(45)8(5)	C(12)-421(7)	C(37)-C(37))	1.411(5)
N(1)-C(19)	N(4)-C(224)(5)	C(13)G(4485)	C(38)-GQBQ5)	1.418(6)
N(1)-C(23)	N(4)-C326(6)	C(13)-C(5545)	C(39)42406)	1.351(6)
B(1)-C(7)	N(4)-B59)#6)	C(15)65965)	C(40)G74()	1.374(6)
B(1)-C(13)	N(5)- C(639) (5)	C(15)-G(1245)	C(41)-G8325)	1.373(6)
B(1)-N(4)#1	N(5) -C(659) (5)	C(17)G(4B(6))	C(43)C7245)	1.383(5)
C(2)-C(3)	C(5)-C36B(6)	C(17)-G7686)	C(43)C(45)	1.412(5)
Cl(2)-C(61)	O(5) -Ľ(636) (6)	C(17)G72\$5)	C(44)-@7455)	1.398(6)
O(2)-C(8)	O(5)-C339(5)	C(19)@(205)	C(45)C7466)	1.364(5)
O(2)-C(6)	O(6)-C349(5)	C(20)G(24(5)	C(46)G(47()	1.389(5)
N(2)-C(25)	O(6)-C346(5)	C(21)-@(2225)	C(47)G84787)	1.378(5)
N(2)-N(3)	N(6)-C353(4)	C(21)G (23(5)	C(47)- S(556)	1.479(5)
N(2)-C(27)	N(6)- IN (7)(5)	C(23)-C(224)	C(49)C(85(07)	1.386(6)
B(2)-C(31)	N(6)-C\$83(6)	C(27)	C(50)525(8)	1.339(7)
B(2)-C(43)	N(7) -L696 (6)	C(28)-C(28)5)	C(51)-C(52)0)	1.408(7)
B(2)-C(37)	C(7)-C680(6)	C(29)4(305)	C(51)G(574)0)	1.524(7)
B(2)-N(8)#2	C(7)-C6120(5)	C(31)42365)	C(52)C(53))	1.387(6)
N(3)-C(26)	N(8) -C305 (5)	C(31)G(4025)	C(57)-	1.483(6)
C(3)-C(4)	N(8)-C350(7)	C(32)G(235)	C(58)G8595)	1.493(7)
O(3)-C(19)	N(8)-B32)#3)	C(33)67\$45)	C(59)-C(80(6))	1.24(3)
O(3)-C(11)	C(8)-C498(5)	C(34)4(256)	C(59)C7607)	1.387(10
O(4)-C(32)	C(9)-C&84(5)	C(35)-S(43(66))	1.384(6)	
C(2)-C(1)-C(6)	115.5(4)	C(8)-O(2)-C(6)	119.8(3)	
C(2)-C(1)-B(1) 1	21.9(4)	C(25)-N(2)-N(3)	111.9(3)	
C(6)-C(1)-B(1)	1 22.6(4)	C(25)-N(2)-C(27)	129.4(4)	
C(14)-O(1)-C(2)	117.8(3)	N(3)-N(2)-C(27)	118.6(3)	
C(19)-N(1)-C(23)	114.3(4)	C(31)-B(2)-C(43)	107.8(3)	
C(7)-B(1)-C(1)	107.3(3)	C(31)-B(2)-C(37)	106.6(3)	
C(7)-B(1)-C(13)	121.7(3)	C(43)-B(2)-C(37)	121.7(3)	
C(1)-B(1)-C(13)	104.7(3)	C(31)-B(2)-N(8)#2	104.6(3)	
C(7)-B(1)-N(4)#1	109.9(3)	C(43)-B(2)-N(8)#2	107.9(3)	
C(1)-B(1)-N(4)#1	106.7(3)	C(37)-B(2)-N(8)#2	107.0(3)	
C(13)-B(1)-N(4)#1	105.6(3)	C(26)-N(3)-N(2)	102.4(3)	
C(1)-C(2)-C(3)	125.1(4)	C(4)-C(3)-C(2)	116.9(5)	
C(1)-C(2)-O(1)	119.5(3)	C(19)-O(3)-C(11)	118.5(3)	
C(3)-C(2)-O(1)	115.4(4)	C(32)-O(4)-C(44)	119.9(3)	

C(3)-C(4)-C(5)	121.4(4)	C(18)-C(17)-C(25)	119.9(4)
C(25)-N(4)-C(26)	104.7(3)	C(17)-C(16)-C(15)	119.2(4)
C(25)-N(4)-B(1)#1	130.1(3)	C(17)-C(18)-C(13)	122.6(4)
C(26)-N(4)-B(1)#1	125.2(3)	N(1)-C(19)-C(20)	126.2(4)
C(49)-N(5)-C(53)	116.0(4)	N(1)-C(19)-O(3)	118.3(4)
C(6)-C(5)-C(4)	117.3(4)	C(20)-C(19)-O(3)	115.5(4)
C(36)-O(5)-C(38)	119.0(3)	C(21)-C(20)-C(19)	118.9(4)
C(49)-O(6)-C(41)	118.4(3)	C(20)-C(21)-C(22)	117.6(4)
C(5)-C(6)-O(2)	114.8(4)	C(20)-C(21)-C(24)	122.7(5)
C(5)-C(6)-C(1)	123.7(4)	C(22)-C(21)-C(24)	119.7(5)
O(2)-C(6)-C(1)	121.4(4)	N(1)-C(23)-C(22)	124.5(5)
C(55)-N(6)-N(7)	111.2(3)	C(23)-C(22)-C(21)	118.5(5)
C(55)-N(6)-C(57)	128.1(3)	N(2)-C(25)-N(4)	107.4(3)
N(7)-N(6)-C(57)	120.6(3)	N(2)-C(25)-C(17)	124.5(3)
C(56)-N(7)-N(6)	103.9(3)	N(4)-C(25)-C(17)	128.1(3)
C(8)-C(7)-C(12)	114.1(4)	N(3)-C(26)-N(4)	113.5(4)
C(8)-C(7)-B(1)	119.6(4)	N(2)-C(27)-C(28)	109.9(5)
C(12)-C(7)-B(1)	126.3(3)	C(29)-C(28)-C(27)	116.7(7)
C(55)-N(8)-C(56)	105.2(3)	C(30)-C(29)-C(28)	125.4(9)
C(55)-N(8)-B(2)#2	130.1(3)	C(36)-C(31)-C(32)	115.8(4)
C(56)-N(8)-B(2)#2	124.6(3)	C(36)-C(31)-B(2)	123.8(4)
O(2)-C(8)-C(7)	123.9(4)	C(32)-C(31)-B(2)	120.3(4)
O(2)-C(8)-C(9)	114.3(4)	O(4)-C(32)-C(33)	116.4(4)
C(7)-C(8)-C(9)	121.8(4)	O(4)-C(32)-C(31)	120.7(3)
C(10)-C(9)-C(8)	121.5(4)	C(33)-C(32)-C(31)	122.9(4)
C(9)-C(10)-C(11)	118.2(4)	C(34)-C(33)-C(32)	117.4(4)
C(11)-C(12)-C(7)	123.1(4)	C(35)-C(34)-C(33)	121.9(4)
C(12)-C(11)-C(10)	121.3(4)	C(34)-C(35)-C(36)	118.8(4)
C(12)-C(11)-O(3)	120.7(4)	O(5)-C(36)-C(31)	120.7(3)
C(10)-C(11)-O(3)	117.9(4)	O(5)-C(36)-C(35)	116.4(4)
C(18)-C(13)-C(14)	114.2(3)	C(31)-C(36)-C(35)	122.8(4)
C(18)-C(13)-B(1)	128.2(4)	C(38)-C(37)-C(42)	115.1(4)
C(14)-C(13)-B(1)	117.5(3)	C(38)-C(37)-B(2)	118.3(3)
C(16)-C(15)-C(14)	120.0(4)	C(42)-C(37)-B(2)	126.5(3)
O(1)-C(14)-C(15)	114.9(4)	C(37)-C(38)-O(5)	124.4(4)
O(1)-C(14)-C(13)	122.0(3)	C(37)-C(38)-C(39)	123.2(4)
C(15)-C(14)-C(13)	123.1(4)	O(5)-C(38)-C(39)	112.4(4)
C(16)-C(17)-C(18)	120.7(4)	C(40)-C(39)-C(38)	118.9(4)
C(16)-C(17)-C(25)	119.3(3)	C(39)-C(40)-C(41)	119.9(4)

C(42)-C(41)-C(40)	121.1(4)	N(5)-C(49)-C(50)	125.3(5)
C(42)-C(41)-O(6)	119.3(4)	O(6)-C(49)-C(50)	116.3(4)
C(40)-C(41)-O(6)	119.5(4)	C(51)-C(50)-C(49)	118.5(5)
C(41)-C(42)-C(37)	121.8(4)	C(50)-C(51)-C(52)	118.9(5)
C(44)-C(43)-C(48)	113.9(3)	C(50)-C(51)-C(54)	121.9(5)
C(44)-C(43)-B(2)	118.0(3)	C(52)-C(51)-C(54)	119.1(5)
C(48)-C(43)-B(2)	128.0(3)	C(53)-C(52)-C(51)	118.0(5)
C(43)-C(44)-O(4)	123.7(4)	N(5)-C(53)-C(52)	123.3(4)
C(43)-C(44)-C(45)	124.0(3)	N(8)-C(55)-N(6)	106.9(3)
O(4)-C(44)-C(45)	112.3(3)	N(8)-C(55)-C(47)	129.1(3)
C(46)-C(45)-C(44)	119.3(4)	N(6)-C(55)-C(47)	124.0(3)
C(45)-C(46)-C(47)	119.8(4)	N(7)-C(56)-N(8)	112.8(3)
C(48)-C(47)-C(46)	119.3(3)	N(6)-C(57)-C(58)	113.6(4)
C(48)-C(47)-C(55)	120.5(3)	C(57)-C(58)-C(59)	114.8(4)
C(46)-C(47)-C(55)	120.3(3)	C(60A)-C(59)-C(58)	126.7(16)
C(47)-C(48)-C(43)	123.6(3)	C(60)-C(59)-C(58)	118.4(7)
N(5)-C(49)-O(6)	118.2(4)	Cl(2)-C(61)-Cl(1)	117.2(4)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2 #2 -x+1, -y, -z+1

Table 3. Anisotropic displacement parameters (Å ² x 10^3) for dimer B2 ; the anisotropic	
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + + 2hka^* b^* U^{12}]$	

uispide	ement fueld	or exponent a	akes the form	\mathbf{n} . $\mathbf{Z}\mathbf{n}$ [\mathbf{n} \mathbf{u}	0	
_	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	42(3)	36(2)	37(2)	0(2)	4(2)	9(2)
Cl(1)	91(1)	90(1)	108(1)	-33(1)	-10(1)	16(1)
O(1)	37(2)	52(2)	66(2)	-13(2)	1(1)	0(1)
N(1)	53(2)	67(3)	47(2)	-5(2)	-6(2)	2(2)
B(1)	40(3)	31(2)	35(2)	-1(2)	3(2)	-3(2)
C(2)	46(3)	47(3)	42(2)	-7(2)	3(2)	6(2)
Cl(2)	206(3)	100(1)	148(2)	-6(1)	82(2)	-17(1)
O(2)	59(2)	42(2)	67(2)	-18(2)	-9(2)	11(2)
N(2)	59(2)	46(2)	29(2)	-1(2)	4(2)	-1(2)
B(2)	48(3)	35(3)	29(2)	0(2)	-3(2)	-8(2)
N(3)	61(3)	49(2)	42(2)	-7(2)	15(2)	-7(2)
C(3)	61(3)	59(3)	60(3)	-8(2)	-5(2)	19(3)
O(3)	48(2)	60(2)	60(2)	6(2)	6(2)	-4(2)
O(4)	59(2)	65(2)	28(1)	2(1)	1(1)	10(2)
C(4)	67(4)	55(3)	78(3)	-2(3)	5(3)	27(3)

N(4)	44(2)	39(2)	29(2)	-4(1)	3(2)	3(2)
N(5)	43(2)	54(2)	57(2)	-9(2)	-9(2)	4(2)
C(5)	55(3)	46(3)	72(3)	-7(2)	-2(2)	6(2)
O(5)	57(2)	84(2)	43(2)	9(2)	-19(2)	4(2)
O(6)	46(2)	59(2)	66(2)	-24(2)	3(2)	1(2)
C(6)	47(3)	37(2)	48(2)	-6(2)	2(2)	4(2)
N(6)	56(2)	39(2)	36(2)	-2(2)	-5(2)	-6(2)
N(7)	72(3)	47(2)	35(2)	-3(2)	-10(2)	-4(2)
C(7)	41(3)	36(2)	31(2)	4(2)	-1(2)	0(2)
N(8)	40(2)	34(2)	31(2)	1(1)	-5(1)	-3(1)
C(8)	55(3)	41(3)	48(2)	-4(2)	-2(2)	-1(2)
C(9)	68(4)	40(3)	99(4)	-19(3)	-7(3)	-5(3)
C(10)	43(3)	59(3)	98(4)	-7(3)	-3(3)	-16(3)
C(12)	48(3)	37(2)	34(2)	1(2)	2(2)	-9(2)
C(11)	44(3)	48(3)	48(2)	-3(2)	2(2)	2(2)
C(13)	43(3)	32(2)	29(2)	2(2)	1(2)	1(2)
C(15)	44(3)	45(2)	52(2)	-4(2)	-8(2)	-4(2)
C(14)	41(3)	42(2)	39(2)	3(2)	6(2)	1(2)
C(17)	49(3)	32(2)	25(2)	1(2)	-3(2)	-1(2)
C(16)	48(3)	41(2)	35(2)	-4(2)	-9(2)	2(2)
C(18)	42(2)	36(2)	28(2)	6(2)	-4(2)	-1(2)
C(19)	38(3)	53(3)	54(3)	-3(2)	-3(2)	-4(2)
C(20)	45(3)	62(3)	61(3)	-10(2)	3(2)	-7(2)
C(21)	44(3)	63(3)	61(3)	-13(3)	-7(2)	1(2)
C(23)	72(4)	92(4)	49(3)	-3(3)	-7(3)	7(3)
C(22)	65(4)	73(4)	78(4)	3(3)	-20(3)	8(3)
C(24)	61(4)	107(5)	100(4)	-40(4)	-13(3)	25(3)
C(25)	45(3)	38(2)	23(2)	-3(2)	-4(2)	-6(2)
C(26)	57(3)	43(3)	42(2)	-7(2)	8(2)	-1(2)
C(27)	84(4)	63(3)	52(3)	19(2)	16(3)	-3(3)
C(28)	168(8)	136(6)	105(5)	72(5)	-56(5)	-43(6)
C(29)	237(12)	182(9)	92(6)	39(6)	-51(6)	-54(8)
C(30)	385(18)	121(7)	101(6)	17(5)	-77(8)	-2(9)
C(31)	54(3)	40(2)	33(2)	-3(2)	-8(2)	-5(2)
C(32)	64(3)	41(2)	31(2)	-1(2)	-5(2)	-4(2)
C(33)	70(3)	46(3)	39(2)	0(2)	3(2)	-6(2)
C(34)	91(4)	44(3)	29(2)	10(2)	-10(2)	-10(3)
C(35)	87(4)	46(3)	40(3)	10(2)	-28(3)	-5(3)
C(36)	57(3)	40(2)	39(2)	6(2)	-12(2)	-7(2)

C(37)	38(2)	34(2)	44(2)	0(2)	-11(2)	-3(2)
C(38)	45(3)	46(3)	55(3)	1(2)	-8(2)	-7(2)
C(39)	48(3)	70(3)	85(4)	5(3)	-17(3)	12(3)
C(40)	49(3)	67(3)	70(3)	-1(3)	7(3)	11(2)
C(41)	42(3)	48(3)	59(3)	-9(2)	0(2)	3(2)
C(42)	44(3)	39(2)	45(2)	-4(2)	-8(2)	3(2)
C(43)	37(2)	26(2)	31(2)	2(2)	-3(2)	-1(2)
C(44)	56(3)	40(2)	25(2)	1(2)	-2(2)	2(2)
C(45)	34(3)	65(3)	40(2)	-2(2)	8(2)	4(2)
C(46)	40(3)	51(3)	39(2)	0(2)	-10(2)	6(2)
C(47)	37(2)	25(2)	30(2)	3(2)	1(2)	-1(2)
C(48)	36(2)	29(2)	34(2)	-1(2)	2(2)	0(2)
C(49)	31(3)	60(3)	68(3)	-19(3)	-5(2)	1(2)
C(50)	47(3)	79(4)	62(3)	-21(3)	2(2)	-8(3)
C(51)	49(3)	123(5)	57(3)	-21(3)	-6(3)	-13(3)
C(52)	60(3)	97(4)	55(3)	-6(3)	-4(2)	-12(3)
C(53)	48(3)	65(3)	61(3)	-17(3)	-10(2)	-2(2)
C(54)	114(6)	188(8)	53(3)	-20(4)	5(3)	-43(5)
C(55)	34(2)	35(2)	38(2)	-6(2)	-6(2)	4(2)
C(56)	60(3)	42(3)	34(2)	-5(2)	-4(2)	-10(2)
C(57)	69(3)	37(2)	42(2)	-5(2)	-2(2)	-3(2)
C(58)	53(3)	55(3)	80(3)	6(3)	5(3)	-3(2)
C(59)	88(5)	61(4)	100(5)	2(3)	20(4)	-13(3)
C(60)	117(8)	81(6)	98(6)	-7(5)	2(5)	-49(6)
C(61)	166(7)	74(4)	116(5)	-32(4)	61(5)	-21(4)
C(60A)	81(18)	190(30)	140(20)	-20(20)	-32(16)	-11(18)

Table 4. Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($Å^2 x \ 10^3$) for
dimer B2 .	

	Х	У	Z	U(eq)	
H(3)	749	8303	9828	73	
H(4)	1032	9837	10272	81	
H(5)	2803	10175	10804	69	
H(9)	6402	9589	11238	82	
H(10)	8163	8823	11060	79	
H(12)	6672	6426	10444	47	
H(15)	1992	5652	8851	56	
H(16)	3431	4715	8262	50	
H(18)	5760	5856	9555	42	

H(20)	10282	5958	10324	67
H(23)	8801	5597	12708	85
H(22)	10341	4586	12363	87
H(24A)	11203	3951	10785	134
H(24B)	11894	4244	11501	134
H(24C)	11994	4858	10723	134
H(26)	7197	2833	8151	57
H(27A)	6877	5998	7326	80
H(27B)	5690	6287	7739	80
H(28A)	5675	5014	6529	164
H(28B)	4648	5712	6821	164
H(29A)	5333	6961	6289	203
H(29B)	6519	6403	6124	203
H(30A)	5890	5750	5167	304
H(30B)	5467	6873	5125	304
H(30C)	4598	6065	5380	304
H(33)	6150	1374	1436	62
H(34)	4595	1953	720	66
H(35)	2805	2202	1263	69
H(39)	553	2773	3237	82
H(40)	89	2886	4498	75
H(42)	2962	1330	5056	51
H(45)	7865	665	3570	56
H(46)	8070	648	4865	53
H(48)	4677	1101	5119	40
H(50)	779	2234	7026	74
H(52)	-909	-234	7095	85
H(53)	-503	-373	5817	69
H(54A)	77	1659	8222	175
H(54B)	-200	538	8307	175
H(54C)	-1185	1337	8080	175
H(56)	6507	347	7616	54
H(57A)	6402	3197	6215	59
H(57B)	6676	2734	5418	59
H(58A)	8593	2553	5698	75
H(58B)	8339	2959	6516	75
H(59A)	8237	4017	5131	100
H(59B)	7634	4447	5864	100
H(60A)	9931	3994	5753	145

H(60B)	9266	4584	6397	145	
H(60C)	9345	5047	5560	145	
H(61A)	5786	7469	2334	142	
H(61B)	7119	7344	2482	142	
H(60D)	8222	5046	5011	203	
H(60E)	7199	4331	4985	203	
H(60F)	8435	3996	4668	203	

The ORTEP diagram showing the structure of dimer $\mathbf{B2}$ with labeling schemes

Table 1. Atomic coord	dinates (x 10 ⁴) and equivalent isotropic displacemen	t parameters (Å ² x
10 ³) for dimer B3 . U(ec	eq) is defined as one third of the trace of the orthogona	alized U ^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	1608(1)	3157(1)	4943(1)	39(1)	
N(3)	5108(1)	7489(1)	4634(1)	24(1)	
N(4)	3710(1)	8019(1)	5442(1)	26(1)	
N(2)	4404(1)	8919(1)	5279(1)	29(1)	
O(2)	3622(2)	1575(1)	7219(1)	56(1)	
C(21)	4114(2)	7166(1)	5059(1)	23(1)	
C(22)	5230(2)	8564(1)	4790(1)	26(1)	
C(3)	3471(2)	6102(1)	5069(1)	23(1)	

C(8)	2730(2)	2391(1)	6056(1)	32(1)
C(7)	1686(2)	2393(2)	5518(1)	36(1)
C(13)	4723(2)	3234(2)	6798(1)	32(1)
C(2)	3953(2)	5264(1)	5533(1)	23(1)
C(1)	3405(2)	4230(1)	5523(1)	24(1)
C(6)	2287(2)	4117(1)	5036(1)	28(1)
C(18)	5618(2)	4026(2)	7029(1)	35(1)
C(23)	2771(2)	8074(2)	6059(1)	35(1)
C(14)	4489(2)	2429(2)	7343(1)	42(1)
C(4)	2361(2)	5941(2)	4600(1)	32(1)
C(5)	1761(2)	4954(2)	4591(1)	36(1)
N(1)	7101(2)	4897(2)	7956(1)	64(1)
C(16)	6001(2)	3223(2)	8271(1)	56(1)
C(9)	2678(2)	1628(2)	6640(1)	43(1)
C(12)	688(2)	1640(2)	5510(1)	48(1)
C(15)	5133(2)	2425(2)	8059(1)	56(1)
C(17)	6255(2)	4066(2)	7756(1)	44(1)
C(11)	715(3)	877(2)	6091(2)	58(1)
C(10)	1670(3)	866(2)	6663(2)	56(1)
B(1)	3948(2)	3165(2)	5972(1)	28(1)
C(24)	3422(2)	8495(2)	6799(1)	51(1)
C(25)	4643(2)	7892(2)	7089(1)	64(1)
C(20)	7228(3)	5791(3)	7467(2)	74(1)
C(26)	5221(3)	8410(3)	7818(1)	93(1)
C(19)	7793(3)	4918(3)	8695(2)	97(1)

Table 2. Bond lengths [Å] and angles [°] for dimer **B3**.

O(1)-C(7)	1.377(2)	N(2)-C(22)	1.305(2)
O(1)-C(6)	1.385(2)	O(2)-C(9)	1.366(3)
N(3)-C(21)	1.349(2)	O(2)-C(14)	1.395(3)
N(3)-C(22)	1.364(2)	C(21)-C(3)	1.476(2)
N(3)-B(1)#1	1.672(2)	C(22)-H(22A)	0.9500
N(4)-C(21)	1.325(2)	C(3)-C(4)	1.386(2)
N(4)-N(2)	1.3606(19)	C(3)-C(2)	1.391(2)
N(4)-C(23)	1.475(2)	C(8)-C(7)	1.390(3)

C(8)-C(9)	1.391(3)	C(16)-C(17)	1.408(4)
C(8)-B(1)	1.588(3)	C(16)-H(16A)	0.9500
C(7)-C(12)	1.386(3)	C(9)-C(10)	1.403(3)
C(13)-C(18)	1.392(3)	C(12)-C(11)	1.383(3)
C(13)-C(14)	1.404(3)	C(12)-H(12A)	0.9500
C(13)-B(1)	1.611(3)	C(15)-H(15A)	0.9500
C(2)-C(1)	1.400(2)	C(11)-C(10)	1.365(4)
C(2)-H(2B)	0.9500	C(11)-H(11A)	0.9500
C(1)-C(6)	1.402(2)	C(10)-H(10A)	0.9500
C(1)-B(1)	1.620(3)	C(24)-C(25)	1.5267(10)
C(6)-C(5)	1.390(3)	C(24)-H(24A)	0.9900
C(18)-C(17)	1.397(3)	C(24)-H(24B)	0.9900
C(18)-H(18A)	0.9500	C(25)-C(26)	1.518(3)
C(23)-C(24)	1.514(3)	C(25)-H(25A)	0.9900
C(23)-H(23A)	0.9900	C(25)-H(25B)	0.9900
C(23)-H(23B)	0.9900	C(20)-H(20A)	0.9800
C(14)-C(15)	1.381(3)	C(20)-H(20B)	0.9800
C(4)-C(5)	1.369(3)	C(20)-H(20C)	0.9800
C(4)-H(4A)	0.9500	C(26)-H(26A)	0.9800
C(5)-H(5A)	0.9500	C(26)-H(26B)	0.9800
N(1)-C(17)	1.383(3)	C(26)-H(26C)	0.9800
N(1)-C(20)	1.406(4)	C(19)-H(19A)	0.9800
N(1)-C(19)	1.439(3)	C(19)-H(19B)	0.9800
C(16)-C(15)	1.371(4)	С(19)-Н(19С)	0.9800
C(7)-O(1)-C(6)	119.52(14)	N(3)-C(22)-H(22A)	123.1
C(21)-N(3)-C(22)	104.20(14)	C(4)-C(3)-C(2)	119.68(15)
C(21)-N(3)-B(1)#1	132.56(13)	C(4)-C(3)-C(21)	118.65(15)
C(22)-N(3)-B(1)#1	123.23(13)	C(2)-C(3)-C(21)	121.68(14)
C(21)-N(4)-N(2)	111.74(13)	C(7)-C(8)-C(9)	115.91(17)
C(21)-N(4)-C(23)	129.17(14)	C(7)-C(8)-B(1)	121.74(16)
N(2)-N(4)-C(23)	118.62(13)	C(9)-C(8)-B(1)	122.24(18)
C(22)-N(2)-N(4)	102.78(13)	O(1)-C(7)-C(12)	115.83(19)
C(9)-O(2)-C(14)	120.34(15)	O(1)-C(7)-C(8)	120.41(15)
N(4)-C(21)-N(3)	107.51(14)	C(12)-C(7)-C(8)	123.75(19)
N(4)-C(21)-C(3)	123.82(14)	C(18)-C(13)-C(14)	115.93(18)
N(3)-C(21)-C(3)	128.46(14)	C(18)-C(13)-B(1)	126.01(16)
N(2)-C(22)-N(3)	113.76(15)	C(14)-C(13)-B(1)	118.06(18)
N(2)-C(22)-H(22A)	123.1	C(3)-C(2)-C(1)	122.91(15)

C(3)-C(2)-H(2B)	118.5	C(16)-C(15)-H(15A)	119.4
C(1)-C(2)-H(2B)	118.5	C(14)-C(15)-H(15A)	119.4
C(2)-C(1)-C(6)	114.65(15)	N(1)-C(17)-C(18)	121.2(2)
C(2)-C(1)-B(1)	127.63(14)	N(1)-C(17)-C(16)	121.7(2)
C(6)-C(1)-B(1)	117.66(15)	C(18)-C(17)-C(16)	117.1(2)
O(1)-C(6)-C(5)	113.24(15)	C(10)-C(11)-C(12)	121.8(2)
O(1)-C(6)-C(1)	123.46(16)	C(10)-C(11)-H(11A)	119.1
C(5)-C(6)-C(1)	123.29(16)	C(12)-C(11)-H(11A)	119.1
C(13)-C(18)-C(17)	124.23(19)	C(11)-C(10)-C(9)	118.8(2)
C(13)-C(18)-H(18A)	117.9	C(11)-C(10)-H(10A)	120.6
C(17)-C(18)-H(18A)	117.9	C(9)-C(10)-H(10A)	120.6
N(4)-C(23)-C(24)	110.68(15)	C(8)-B(1)-C(13)	108.13(15)
N(4)-C(23)-H(23A)	109.5	C(8)-B(1)-C(1)	106.25(15)
C(24)-C(23)-H(23A)	109.5	C(13)-B(1)-C(1)	122.11(15)
N(4)-C(23)-H(23B)	109.5	C(8)-B(1)-N(3)#1	104.28(13)
C(24)-C(23)-H(23B)	109.5	C(13)-B(1)-N(3)#1	107.94(14)
H(23A)-C(23)-H(23B)	108.1	C(1)-B(1)-N(3)#1	106.80(13)
C(15)-C(14)-O(2)	114.46(19)	C(23)-C(24)-C(25)	115.87(18)
C(15)-C(14)-C(13)	121.3(2)	C(23)-C(24)-H(24A)	108.3
O(2)-C(14)-C(13)	124.20(19)	C(25)-C(24)-H(24A)	108.3
C(5)-C(4)-C(3)	119.60(17)	C(23)-C(24)-H(24B)	108.3
C(5)-C(4)-H(4A)	120.2	C(25)-C(24)-H(24B)	108.3
C(3)-C(4)-H(4A)	120.2	H(24A)-C(24)-H(24B)	107.4
C(4)-C(5)-C(6)	119.77(16)	C(26)-C(25)-C(24)	110.7(2)
C(4)-C(5)-H(5A)	120.1	C(26)-C(25)-H(25A)	109.5
C(6)-C(5)-H(5A)	120.1	C(24)-C(25)-H(25A)	109.5
C(17)-N(1)-C(20)	120.60(18)	C(26)-C(25)-H(25B)	109.5
C(17)-N(1)-C(19)	121.2(3)	C(24)-C(25)-H(25B)	109.5
C(20)-N(1)-C(19)	118.0(2)	H(25A)-C(25)-H(25B)	108.1
C(15)-C(16)-C(17)	120.1(2)	N(1)-C(20)-H(20A)	109.5
C(15)-C(16)-H(16A)	120.0	N(1)-C(20)-H(20B)	109.5
С(17)-С(16)-Н(16А)	120.0	H(20A)-C(20)-H(20B)	109.5
O(2)-C(9)-C(8)	121.35(18)	N(1)-C(20)-H(20C)	109.5
O(2)-C(9)-C(10)	116.60(19)	H(20A)-C(20)-H(20C)	109.5
C(8)-C(9)-C(10)	122.1(2)	H(20B)-C(20)-H(20C)	109.5
C(11)-C(12)-C(7)	117.5(2)	C(25)-C(26)-H(26A)	109.5
С(11)-С(12)-Н(12А)	121.3	C(25)-C(26)-H(26B)	109.5
C(7)-C(12)-H(12A)	121.3	H(26A)-C(26)-H(26B)	109.5
C(16)-C(15)-C(14)	121.3(2)	C(25)-C(26)-H(26C)	109.5

H(26A)-C(26)-H(26C)	109.5	H(19A)-C(19)-H(19B)	109.5
H(26B)-C(26)-H(26C)	109.5	N(1)-C(19)-H(19C)	109.5
N(1)-C(19)-H(19A)	109.5	H(19A)-C(19)-H(19C)	109.5
N(1)-C(19)-H(19B)	109.5	H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2 #2 -x+1, -y, -z+1

Table 3. Anisotropic displacement parameters (Å² x 10³) for dimer **B3**; the anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2hka^* b^* U^{12}]$

-	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	46(1)	28(1)	44(1)	-5(1)	-2(1)	-18(1)
N(3)	31(1)	15(1)	27(1)	1(1)	4(1)	-2(1)
N(4)	28(1)	16(1)	33(1)	-1(1)	5(1)	-2(1)
N(2)	34(1)	17(1)	35(1)	1(1)	6(1)	-2(1)
O(2)	72(1)	36(1)	63(1)	25(1)	19(1)	7(1)
C(21)	24(1)	18(1)	26(1)	2(1)	1(1)	1(1)
C(22)	32(1)	16(1)	31(1)	2(1)	4(1)	-2(1)
C(3)	25(1)	18(1)	25(1)	-3(1)	3(1)	-2(1)
C(8)	40(1)	19(1)	40(1)	-1(1)	18(1)	-2(1)
C(7)	40(1)	23(1)	45(1)	-7(1)	18(1)	-8(1)
C(13)	39(1)	29(1)	28(1)	2(1)	8(1)	12(1)
C(2)	23(1)	20(1)	27(1)	-2(1)	1(1)	-1(1)
C(1)	26(1)	20(1)	26(1)	-3(1)	5(1)	-4(1)
C(6)	33(1)	23(1)	30(1)	-6(1)	4(1)	-10(1)
C(18)	39(1)	40(1)	27(1)	-2(1)	0(1)	12(1)
C(23)	33(1)	26(1)	48(1)	-6(1)	17(1)	-1(1)
C(14)	52(1)	38(1)	37(1)	11(1)	14(1)	20(1)
C(4)	37(1)	28(1)	31(1)	5(1)	-6(1)	-4(1)
C(5)	33(1)	37(1)	36(1)	-1(1)	-10(1)	-10(1)
N(1)	54(1)	98(2)	40(1)	-18(1)	-18(1)	1(1)
C(16)	59(1)	83(2)	27(1)	2(1)	-1(1)	40(1)
C(9)	52(1)	28(1)	50(1)	8(1)	24(1)	5(1)
C(12)	45(1)	32(1)	69(2)	-13(1)	21(1)	-16(1)
C(15)	71(2)	61(2)	37(1)	20(1)	15(1)	38(1)
C(17)	43(1)	61(2)	28(1)	-9(1)	-2(1)	24(1)
C(11)	54(1)	33(1)	88(2)	-7(1)	37(1)	-16(1)
C(10)	72(2)	21(1)	79(2)	9(1)	46(1)	1(1)
B(1)	36(1)	19(1)	30(1)	0(1)	9(1)	0(1)

C(24)	57(1)	60(2)	39(1)	-3(1)	22(1)	0(1)	
C(25)	66(2)	84(2)	44(1)	5(1)	8(1)	-11(1)	
C(20)	66(2)	98(2)	59(2)	-23(2)	-8(1)	-35(2)	
C(26)	106(2)	138(3)	36(1)	1(2)	3(1)	-58(2)	
C(19)	66(2)	174(4)	48(2)	-35(2)	-28(1)	26(2)	

Table 4. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for dimer **B3**.

H(22A)	5859	9012			
$\mathbf{U}(2\mathbf{D})$	1000	/ VI =	4564	32	
$\Pi(2D)$	4686	5401	5871	28	
H(18A)	5807	4575	6669	42	
H(23A)	2411	7346	6150	42	
H(23B)	2041	8556	5897	42	
H(4A)	2018	6512	4287	39	
H(5A)	987	4843	4281	43	
H(16A)	6431	3207	8767	67	
H(12A)	11	1649	5119	58	
H(15A)	4972	1858	8410	67	
H(11A)	49	345	6092	69	
H(10A)	1654	352	7068	68	
H(24A)	2780	8473	7207	62	
H(24B)	3656	9261	6720	62	
H(25A)	4420	7130	7194	77	
H(25B)	5294	7899	6686	77	
H(20A)	7865	6296	7699	112	
H(20B)	7524	5547	6967	112	
H(20C)	6383	6152	7393	112	
H(26A)	6002	8012	7995	140	
H(26B)	5454	9160	7711	140	
H(26C)	4580	8392	8219	140	
H(19A)	8342	5564	8732	145	
H(19B)	7168	4931	9105	145	
H(19C)	8341	4273	8752	145	

The ORTEP diagram showing the structure of dimer **B3** with labeling schemes **S8 References**

 a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Gaussian, Inc., Wallingford, CT 2009. b) M. J. Frisch, G. W. Trucks, G. E. Schlegel, et. al., *Revis. B01* 2010.

- [2] a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, **1988**, *37*, 785-789; b) A. D. Becke, *J. Chem. Phys.*, **1993**, *98*, 1372-1377; c) A. D. Becke, *J. Chem. Phys.*, **1993**, *98*, 5648-5652; d) T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.* **2004**, *393*, 51–57.
- [3] a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724–728; b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639–5648.
- [4] G. Y. Meng, X. Chen, X. Wang, N. Wang, T. Peng, S. N. Wang, Adv. Optical Mater. 2019, 7, 1900130.