Reversible photoluminescence switching in photochromic material $Sr_6Ca_4(PO_4)_6F_2$:Eu²⁺ and the modified performance by trap engineering *via* Ln³⁺ (Ln = La, Y, Gd, Lu) co-doping for erasable optical data storage

Yang Lv¹, Yahong Jin^{1,3,*}, Zhenzhang Li⁴, Shaoan Zhang⁵, Haoyi Wu¹, Guangting

Xiong¹, Guifang Ju¹, Li Chen¹, Zhengfa Hu^{1,2}, Yihua Hu^{1,2,*}

¹School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou, 510006, China

²Synergy Innovation Institute for Modern Industries of Dongyuan and GDUT,

Heyuan 517025, China

³Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, China

⁴College of Mathematics and Systems Science, Guangdong Polytechnic Normal

University, Zhongshan Avenue No. 293 West, Tianhe District, Guangzhou,

510665, China

⁵School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Zhongshan Avenue No. 293 West, Tianhe District, Guangzhou, 510665, China

Corresponding author:

Fax: +86 20 39322265;

Tel: +86 20 39322262;

E-mail: yhjin@gdut.edu.cn (Y. Jin)

E-mail: huyh@gdut.edu.cn (Y. Hu)

Fig. S1 Reflection spectra of sample SCP:0.01Eu²⁺ after different wavelength light irradiation.

Fig. S2 (a) Several cycles of sample SCP:0.01Eu²⁺ after alternately UV light and visible light irradiation, (b) several cycles of sample SCP:0.01Eu²⁺ after alternately UV light and heat treatment.

Fig. S3 TL curves of sample SCP:xEu²⁺ (x=0.004, 0.01, 0.03 and 0.08).

Fig. S4 The overlap of emission band and absorption band of sample SCP:0.01Eu²⁺.

Fig. S5 The function of $(F(R)hv)^2$ versus on hv for sample SCP with single Eu²⁺ doped and codoping Ln³⁺ (Ln = La, Y, Gd and Lu) ions.

Fig. S6 TL curves of sample SCP:0.01Eu²⁺ and SCP:0.01Eu²⁺, 0.01Ln³⁺ (Ln=La,Y, Gd, Ln).

Fig. S7 Fluorescence lifetime before and after UV light irradiation of sample (a) SCP:0.01Eu²⁺, (b)SCP:0.01Eu²⁺, 0.01La³⁺, (c)SCP:0.01Eu²⁺, 0.01Y³⁺, (d)SCP:0.01Eu²⁺, 0.01Gd³⁺, (e)SCP:0.01Eu²⁺, 0.01Lu³⁺, (f) the energy transfer efficiency of sample SCP:0.01Eu²⁺ and SCP:0.01Eu²⁺, 0.01Ln³⁺ (Ln=La,Y, Gd, Ln).

Fig. S8 Relative PL intensity of colored sample with different temperature treatment undergo several cycles.

Atoms	Wyckoff	X	у	Z	Frac.
	position				
Cal	2b	0.3333	0.6667	0.0000	1.0000
Sr1	2b	0.3333	0.6667	0.5000	1.0000
Sr2	6c	0.2390	0.2550	0.2500	0.6667
Ca2	6c	0.2390	0.2550	0.2500	0.3333
P1	6c	0.3710	0.3990	0.7400	1.0000
F1	2a	0.0000	0.0000	0.0600	1.0000
01	6c	0.4920	0.3420	0.7300	1.0000
O2	6c	0.4720	0.5900	0.7800	1.0000
O3	6c	0.2590	0.3290	0.9100	1.0000
O4	6c	0.2600	0.3850	0.5700	1.0000

Table S1. Refined structure parameters of $Sr_6Ca_4(PO_4)_6F_2:0.01Eu^{2+}$ derived from the Rietveld refinement of X-ray diffraction data.

Crystal system: hexagonal

Space group: P-63

Cell parameters: a=9.575818 Å, b=9.575818 Å, c=7.114803 Å

 α =90°, β =90° and γ =120°

Cell volume: 564.996 Å³

Z=2

 $R_{wp} = 14.14$ %, $R_p = 10.13$ % and $\chi^2 = 5.58$