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Fig S1. The digital photograph of spray-dried equipment and the corresponding 

synthesized products. Notably, the fabricated samples are large scale and cost-efficient 

for further application.

Fig S2. (a) The enlargement magnetic hysteresis loops from -100 Oe to 100 Oe and (b) the 

resulted magnetic parameters of as-fabricated samples: A Fe2O3/CNTsCM, B 

Fe2O3/CNTsCM@CN-1, C Fe2O3/CNTsCM@CN-2, and D Fe2O3/CNTsCM@CN-3.



Fig S3.  (a)-(b) The FFSEM image of Fe2O3/CNTsCM; (c)-(d) The FFSEM image of 

Fe2O3/CNTsCM@CN-1.

Fig S4. (a)-(b) The FFSEM image of Fe2O3/CNTsCM@-2; (c)-(d) The FFSEM image of 

Fe2O3/CNTsCM@CN-3.



Fig S5. The SEM images of the detailed surface of (a-a1) Fe2O3/CNTsCM, (b-b1) 

Fe2O3/CNTsCM@CN-1, (c-c1) Fe2O3/CNTsCM@CN-2, and (d-d1) Fe2O3/CNTsCM@CN-3.

Fig S6. The FFSEM images of the detailed surface of (a) Fe2O3/CNTsCM, (b) 

Fe2O3/CNTsCM@CN-1, (c) Fe2O3/CNTsCM@CN-2, (d) Fe2O3/CNTsCM@CN-3.



Fig S7. The SEM image (a) and TEM image (b) of Fe2O3/CNTsCM@CN-2. The 
corresponding size distribution (c)-(d) of Fe2O3/CNTsCM@CN-2 sample.

Fig S8. (a) The comprehensive comparison of the microwave absorption properties of as-
prepared samples in the frequency range of 2–18 GHz. (b) The comparison of the maximum 
|RL| of hybrid composites at the same thickness of 2 mm. B Fe2O3/CNTsCM; C 
Fe2O3/CNTsCM@CN-1; D Fe2O3/CNTsCM@-CN-2; E Fe2O3/CNTsCM@-CN-3. 



Fig S9. (a) The LSV curves of as-synthesized samples (ORR measurement); the ORR 
performance comparison among these samples: A Fe2O3/CNTsCM, B Fe2O3/CNTsCM@-1; C 
Fe2O3/CNTsCM@-2; D Fe2O3/CNTsCM@-3. 

Fig S10. The reflection loss values of as-prepared composites with different thicknesses. (a) 
Fe2O3/CNTsCM, (b) Fe2O3/CNTsCM@CN-1, (c) Fe2O3/CNTsCM@CN-2, (d) 
Fe2O3/CNTsCM@CN-3; the 1/4 λ values of as-prepared composites that are related to the 
scattering and refection loss: (a1) Fe2O3/CNTsCM, (b1) Fe2O3/CNTsCM@CN-1, (c1) 
Fe2O3/CNTsCM@CN-2, (d1) Fe2O3/CNTsCM@CN-3; the calculated impedance matching 
value (Z=Zin/Zo) of composites in the frequency range of 2-18 GHz. (a2) Fe2O3/CNTsCM, (b2) 
Fe2O3/CNTsCM@CN-1, (c2) Fe2O3/CNTsCM@CN-2, (d2) Fe2O3/CNTsCM@CN-3.

As is shown by Fig. S10a1-d1, the interrelationships between matching 

thickness (tm) and matching frequency (fm) can be illustrated by the 1/4 

wavelength cancellation theories:



                    (n=1, 3, 5… …)
𝑡𝑚= 𝑛𝜆/4 =

𝑛𝑐

4𝑓𝑚 |𝜇𝑟||𝜀𝑟|

In which fm is the electromagnetic frequency, tm is the matching thickness, 

c is the light velocity. Strikingly, benefited from the hierarchical assembly 

fabricated by the 0D γ-Fe2O3 nanoparticles, 1D carbon nanotubes (CNTs) 

and 2D N-doped carbon layer, the abundant reflection or scattering sites 

can be introduced to these composite systems. Considering the matching 

thickness satisfying with the 1/4 wavelength cancellation equation, the 

incident microwave can be reflected or  scattered from these sites with 

opposite phases of 180°, thereby improving the electromagnetic energy 

dissipation. To sum up, induced by the unique structure-performance 

effect, the reflection loss and scattering loss of the micron-scale composite 

materials can be largely strengthened, which is more beneficial for the total 

microwave absorption.

Fig S11. (a) The Co values, (b) the attenuation constant factor α of these as-synthesized samples 
in the frequency range of 2-18 GHz.



Fig S12. The TEM picture of hierarchical polarized heterojunction interfaces marked by red 
arrow. (a) Carbon-carbon interface (b) Carbon-nanoparticles-carbon-carbon interfaces (c) 
hierarchical heterojunction interfaces (d) The schematics diagram for hierarchical polarized 
heterojunction interfaces.

Fig S13. As exampled by Fe2O3/CNTsCM@CN-2, (a) Off-axis electron holograms; (a1) 
reconstructed phase image; (a2) electric field distribution picture (The different color variations 
indicate the direction of the built-in electric field, and the intensity of the same type color 
indicates the intensity of the built-in electric field); (a3) the corresponding profile lines of 
charge density. (a4) The schematics diagram for the electron transfer along with the polarization 
heterojunction interface. Clearly, a lot of interface polarization relaxation can be introduced 
benefiting from the unique structure assembly.

To clarify interfacial polarization effect, the related charge density 

distribution of Fe2O3/CNTsCM@CN-2 composite was revealed by off-axis 



electron holography (Fig. S13). Implementing with the follow-up treatment 

of hologram images (Fig. S13a), the corresponding electrostatic potential 

information can be further analyzed in view of the Poisson’s equation (Fig. 

S13a1). Exampled by CNTs-CNTs interfaces in Fig. S13a3, the strong 

charge transfer behaviors along with the heterojunction interfaces can 

happen on, resulting in the charge redistribution. For as-synthesized 

Fe2O3/CNTsCM@CN composites, attributed to the forcibly-assembled 

strategy the abundant heterojunction interfaces, among 2D N-doped 

carbon, 0D γ-Fe2O3 and 1D CNTs, can be generated. These tight 

contacting can mainly include CNTs-CNTs interface, CNTs-nanoparticles 

interface, N-doped carbon layers-CNTs interface, N-doped carbon layers-

nanoparticles interface, and N-doped carbon layers-nanoparticles-N-doped 

carbon layers-CNTs-CNTs interface and so on. As a result, a great deal of 

built-in electric field in these hybrid systems has been constructed, 

ultimately boosting interfacial polarization effect.



Fig S14. The typical Cole-Cole semicircles of as-fabricated composite samples in 2-18 GHz: 
(a) Fe2O3/CNTsCM; (b) Fe2O3/CNTsCM@-1; (c) Fe2O3/CNTsCM@-2; (d) 
Fe2O3/CNTsCM@-3.



Table S1. The compared microwave absorption performances of as-synthesized 
samples and other carbon-based nanomaterials.

Absorber Synthetic method Mass ratio

(wt %)

Measured 

thickness 

(mm)

RLmin Values (dB) absorption band (GHz) (RL < −10 

dB) from 1.00 to 5.00 mm

refs

monodisperse 

Fe3O4/C nanosheets

carbothermal

reduction preparation

____ 4.3 mm −43.95 dB 12.7 GHz 22

composite

graphene aerogel

surface and interface reinforce 

approach

15 % 4.0 mm −49 dB 13.6 GHz 43

Fe/Fe3C@NCNTs-

600

 direct pyrolysis

method

30 %
4.97 mm

−46.0 dB 14.8 GHz 44

porous Fe3O4/

carbon fiber

graphitization

Process of bagasse waste
30 %

1.9 mm −48.2 dB 13.8 GHz 45

Fe3O4/graphene 

capsules

catalytic chemical

vapor deposition (CCVD) and 

hydrothermal process

30 % 3.5 mm −32 dB 11.6 GHz 46

FeCo alloy/carbon 

composites

in situ pyrol

ysis of Prussian blue analogues

40 % 2 mm −33 dB 14.8 GHz 47

Graphene/Fe3O4  

aerogel microspheres

electrospinning-freeze drying 5 % 4.0 mm −51.5 dB ____ 48

3D porous 

carbon/Fe3O4 @Fe 

composites

carbonization process of  

loofah sponge

30  % 2 mm −49.6 dB ____ 49

ACHFs–CNTs–Fe3O4 chemical vapor deposition 28  % 2.5 mm −46.828 dB 13.54 GHz 50

PVDF/Fe3O4@PPy electrospinning ____ 2.5 mm –21.5 dB 13.2 GHz 51

biomass-derived 

porous carbon 

materials foam

sol-gel and carbonization 

process

30 % 4.7 mm −43.6 dB ____ 52

carbon cloth 

substrate@ZnO

in situ orientation growth 

process

40% 3.5 mm −43.7 dB 10.04 GHz 53

Fe2O3/CNTs@CN-2 Spray-drying method 10 % 2.0 mm −51.5 dB  14.01 GHz herein


