Electronic Supplementary Information

## Solution processed CZTS solar cells using amine-thiol systems: under-standing the dissolution process and device fabrication

Jamie C. Lowe,<sup>a,b</sup> Lewis D. Wright,<sup>b</sup> Dmitry B. Eremin,<sup>c,d</sup> Julia V. Burykina,<sup>c</sup> Jonathan Martens,<sup>e</sup> Felix Plasser,<sup>a</sup> Valentine P. Ananikov,<sup>c</sup> Jake W. Bowers,<sup>b,\*</sup> Andrei V. Malkov<sup>a,\*</sup>

<sup>a</sup>Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

<sup>b</sup>CREST, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

<sup>c</sup>N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia

<sup>d</sup>The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States

<sup>e</sup>Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands

\*Corresponding author emails: <u>a.malkov@lboro.ac.uk</u>, <u>J.W.Bowers@lboro.ac.uk</u>



Figure S1: Raman spectroscopy data for three ethanolamine/cysteamine solutions containing one of the metals (Cu, Zn, and Sn).



Figure S2: Surface EDX analysis (15 kV) of thin films after spin deposition (left), and after selenisation (right). The remaining peak at ~2.3 keV in the right EDX data could refer to S or Mo, but is most likely indicating Mo (See also Figure S24b).



Figure S3: ESI-(+)MS spectrum of dissolved copper, expanded to the CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>2</sub> complex. Accurate mass for [M]<sup>+</sup> 214.9738 Da, exact mass for CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>2</sub> 214.9732 Da,  $\Delta$  = 2.8 ppm.



Figure S4: ESI-(+)MS spectrum of dissolved copper, expanded to the CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>3</sub> complex. Accurate mass for [M]<sup>+</sup> 246.9452 Da, exact mass for CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>3</sub> 246.9453 Da,  $\Delta$  = 0.4 ppm.



Figure S5: ESI-(+)MS spectrum of dissolved copper, expanded to the CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>4</sub> complex. Accurate mass for [M]<sup>+</sup> 278.9166 Da, exact mass for CuC<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>4</sub> 278.9174 Da,  $\Delta$  = 2.9 ppm.



Figure S6: ESI-(+)MS spectrum of dissolved copper, expanded to the  $Cu_3C_6H_{18}N_3S_3$  complex. Accurate mass for [M]<sup>+</sup> 418.8526 Da, exact mass for  $Cu_3C_6H_{18}N_3S_3$  418.8525 Da,  $\Delta$  = 0.2 ppm. Low signal-to-noise ratio was observed for these ion signals, which suggests only plausible identification of the complex; however, in spite of low intensity isotopic pattern and accurate mass match reliably.



Figure S7: ESI-(+)MS spectrum of dissolved copper, expanded to the  $Cu_4C_6H_{18}N_3S_3$  complex. Accurate mass for [M]<sup>+</sup> 513.7543 Da, exact mass for  $Cu_4C_6H_{18}N_3S_3$  513.7542 Da,  $\Delta$  = 0.2 ppm. Low signal-to-noise ratio was observed for these *ion* signals, which suggests only plausible identification of the complex; however, in spite of low intensity isotopic pattern and accurate mass match reliably.



Figure S8: ESI-(+)MS spectrum of dissolved copper. Accurate mass for [M]<sup>+</sup> 342.8308 Da, exact mass for  $Cu_3C_4H_{12}N_2S_2$  342.8305 Da,  $\Delta$  = 0.9 ppm; accurate mass for [M]<sup>+</sup> 481.7819 Da, exact mass for  $Cu_4C_6H_{18}N_3S_3$  481.7822 Da,  $\Delta$  = 0.6 ppm; accurate mass for [M]<sup>+</sup> 622.7313 Da, exact mass for  $Cu_5C_8H_{24}N_4S_4$  = 622.7321 Da,  $\Delta$  = 1.3 ppm; accurate mass for [M]<sup>+</sup> 761.6825 Da, exact mass for  $Cu_6C_{10}H_{30}N_5S_5$  761.6835 Da,  $\Delta$  = 1.3 ppm; accurate mass for [M]<sup>+</sup> 900.6340 Da, exact mass for  $Cu_7C_{12}H_{36}N_6S_6$  900.6352 Da,  $\Delta$  = 1.3 ppm; accurate mass for [M]<sup>+</sup> 1041.5840 Da, exact mass for  $Cu_8C_{14}H_{42}N_7S_7$  1041.5854 Da,  $\Delta$  = 1.3 ppm; accurate mass for [M]<sup>+</sup> 1180.5356 Da, exact mass for  $Cu_9C_{16}H_{48}N_8S_8$  1180.5366 Da,  $\Delta$  = 0.9 ppm.



Figure S9: ESI-(+)MS spectrum of dissolved tin. Accurate mass for [M]<sup>+</sup> 270.9380 Da, exact mass for SnC<sub>4</sub>H<sub>11</sub>N<sub>2</sub>S<sub>2</sub> 270.9378 Da,  $\Delta$  = 0.7 ppm; accurate mass for [M]<sup>+</sup> 347.9681 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>3</sub> 347.9676 Da,  $\Delta$  = 1.4 ppm.



Figure S10: ESI-(+)MS spectrum of dissolved tin, expanded to the SnC<sub>4</sub>H<sub>13</sub>N<sub>2</sub>S<sub>2</sub>O complex. Accurate mass for [M]<sup>+</sup> 288.9486 Da, exact mass for SnC<sub>4</sub>H<sub>13</sub>N<sub>2</sub>S<sub>2</sub>O 288.9483 Da,  $\Delta$  = 1 ppm.



Figure S12: ESI-(+)MS spectrum of dissolved tin, expanded to the SnC<sub>8</sub>H<sub>21</sub>N<sub>4</sub>S<sub>3</sub> complex. Accurate mass for [M]<sup>+</sup> 388.9948 Da, exact mass for SnC<sub>8</sub>H<sub>21</sub>N<sub>4</sub>S<sub>3</sub> 388.9941 Da,  $\Delta$  = 1.8 ppm. Low signal-to-noise ratio was observed for these ion signals, which suggests only plausible identification of the complex; however, in spite of low intensity isotopic pattern and accurate mass match reliably.



Figure S13: ESI-(+)MS spectrum of dissolved tin. Accurate mass for [M]<sup>+</sup> 379.9397 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>4</sub> = 379.9395 Da,  $\Delta$  = 0.5 ppm; accurate mass for [M]<sup>+</sup> 411.9111 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>5</sub> = 411.9114 Da,  $\Delta$  = 0.7 ppm; accurate mass for [M]<sup>+</sup> 443.8723 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>6</sub> 443.8833 Da,  $\Delta$  = 25 ppm (experimental error is high due to low resolution as a result of signal overlapping); accurate mass for [M]<sup>+</sup> 475.8414 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>7</sub> 475.8553 Da,  $\Delta$  = 29 ppm (experimental error is high due to low resolution as a result of signal overlapping); accurate mass for [M]<sup>+</sup> 507.8246 Da, exact mass for SnC<sub>6</sub>H<sub>18</sub>N<sub>3</sub>S<sub>8</sub> 507.8272 Da,  $\Delta$  = 5 ppm. Low signal-to-noise ratio was observed for these ions' signals, which suggests only plausible identification of the complexes; however, in spite of low intensity isotopic pattern and accurate mass match reliably.



Figure S14: ESI-(+)MS spectrum of dissolved zinc. Accurate mass for [M]<sup>+</sup> 214.9651 Da, exact mass for ZnC<sub>4</sub>H<sub>11</sub>N<sub>2</sub>S<sub>2</sub> 214.9650 Da,  $\Delta$  = 0.5 ppm; accurate mass for [M]<sup>+</sup> 225.0030 Da, exact mass for ZnC<sub>6</sub>H<sub>13</sub>N<sub>2</sub>SO 225.0035 Da,  $\Delta$  = 2.2 ppm.



Figure S15: ESI-(+)MS spectrum of dissolved zinc. Accurate mass for [M]<sup>+</sup> 291.9943 Da, exact mass for  $ZnC_6H_{18}N_3S_3$  291.9949 Da,  $\Delta$  = 2.0 ppm; accurate mass for [M]<sup>+</sup> 323.9835 Da, exact mass for  $ZnC_6H_{18}N_3S_3O_2$  323.9847 Da,  $\Delta$  = 3.7 ppm.



Figure S16: ESI-(+)MS spectrum of dissolved zinc. Accurate mass for [M]<sup>+</sup> 357.9198 Da, exact mass for  $Zn_2C_6H_{18}N_3S_3$  357.9208 Da,  $\Delta$  = 2.8 ppm; accurate mass for [M]<sup>+</sup> 389.9096 Da, exact mass for  $Zn_2C_6H_{18}N_3S_3O_2$  389.9107 Da,  $\Delta$  = 2.8 ppm.



Figure S17: ESI-(+)MS spectrum of dissolved zinc, expanded to the  $Zn_2C_6H_{16}N_3S_5$  complex. Accurate mass for [M]<sup>+</sup> 421.8472 Da, exact mass for  $Zn_2C_6H_{16}N_3S_5$  421.8480 Da,  $\Delta$  = 1.9 ppm.



Figure S18: ESI-(+)MS spectrum of dissolved zinc, expanded to the  $Zn_3C_{10}H_{30}N_7S_5$  complex. Accurate mass for [M]<sup>+</sup> 603.8999 Da, exact mass for  $Zn_3C_{10}H_{30}N_7S_5$  603.8987 Da,  $\Delta$  = 2 ppm. Low signal-to-noise ratio was observed for these ion signals, which suggests only plausible identification of the complex; however, in spite of low intensity, the isotopic pattern and accurate mass match reliably.



Figure S19: Gauss-smoothed curves (3 sec, 5 cycles) for the real-time abundances of ions in ethanolamine/cysteamine solution containing Cu, Zn, Sn and S.



Figure S20: Alternative zinc imine complex  $Zn(HOC_2H_4NHC_2H_2NHC_2H_4S)$  with *m/z* 225.0035 observed in ESI-MS: Structure of the complex optimised by DFT calculations; experimental IRMPD and calculated spectrum (both normalized) of this ion.



Figure S21: Alternative zinc/acetylene complex  $Zn(1)(2)C_2H$  with m/z 225.0035 observed in ESI-MS: Structure of the complex optimised by DFT calculations; experimental IRMPD and calculated spectrum (both normalized) of this ion.



Figure S22: IR spectrum of solution used in this work, ethanolamine/cysteamine containing Cu, Zn, Sn, and S.



Figure S23: Thermogravimetric analysis of water based solution: Water, cysteamine, thiourea, copper (II) oxide, zinc oxide, tin (II) sulphate.



Figure S24: a) XPS analysis of a selenized CZTSe sample, Atomic % was recorded every 50 nm. b) XPS data displaying the region where peaks characteristic of S would appear, the red line is the background, the black lines are data from the sample throughout the bulk of the film. At no point is there a peak greater than the background counts, showing there is negligible levels of S in the film.

Table S1: Cartesian coordinates (Å) and total DFT energy (a.u.) of the Zinc enamine complex  $Zn(HOC_2H_4NHC_2H_2NHC_2H_4S)$  with m/z 225.0035.

Energy (D3-B3LYP/def2-SVP): -2598.035038916

| С  | 2.87022  | -0.03184 | 0.13861  |
|----|----------|----------|----------|
| С  | 2.21627  | 1.34101  | 0.02607  |
| Ν  | 0.82668  | 1.33030  | 0.59720  |
| Н  | 2.12571  | 1.61850  | -1.03415 |
| Н  | 2.82376  | 2.10985  | 0.53394  |
| S  | 1.95961  | -1.37348 | -0.76510 |
| Н  | 3.00289  | -0.31410 | 1.19604  |
| Н  | 3.87441  | 0.02751  | -0.30576 |
| Zn | 0.02578  | -0.50080 | -0.16680 |
| 0  | -1.57064 | -1.50003 | 0.74311  |
| С  | -2.83851 | -1.11155 | 0.18389  |
| С  | -2.77957 | 0.39516  | 0.01383  |
| Ν  | -1.58085 | 0.77321  | -0.79073 |
| С  | -0.01358 | 2.39033  | 0.11353  |
| С  | -1.13336 | 2.13067  | -0.56863 |
| Н  | 0.89373  | 1.37611  | 1.61830  |
| Н  | -1.51808 | -2.45509 | 0.90172  |
| Н  | 0.29982  | 3.42585  | 0.28432  |
| Н  | -1.75698 | 2.94229  | -0.95582 |
| Н  | -1.79281 | 0.64878  | -1.78491 |
| Н  | -3.71298 | 0.76719  | -0.43826 |
| Н  | -2.67240 | 0.86685  | 1.00118  |
| Н  | -3.00089 | -1.62445 | -0.78025 |
| Н  | -3.65568 | -1.38088 | 0.87008  |
|    |          |          |          |

Table S2: Cartesian coordinates (Å) and total DFT energy (a.u.) of the Zinc imine complex Zn(HOC2H4NHC2H2NHC2H4S) with m/z 225.0035.

Energy (D3-B3LYP/def2-SVP): -2598.045414992

| 2.96228  | 0.04654                                                                                                                                                                                                                                                                           | 0.50655                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2.22688  | 1.30476                                                                                                                                                                                                                                                                           | 0.05883                                              |
| 0.91915  | 1.43336                                                                                                                                                                                                                                                                           | 0.75150                                              |
| 2.02437  | 1.24468                                                                                                                                                                                                                                                                           | -1.02185                                             |
| 2.85107  | 2.19827                                                                                                                                                                                                                                                                           | 0.24062                                              |
| 2.05795  | -1.53268                                                                                                                                                                                                                                                                          | 0.15232                                              |
| 3.19708  | 0.10166                                                                                                                                                                                                                                                                           | 1.58257                                              |
| 3.92155  | -0.00872                                                                                                                                                                                                                                                                          | -0.02801                                             |
| 0.08051  | -0.60462                                                                                                                                                                                                                                                                          | 0.39348                                              |
| -1.66170 | -1.81347                                                                                                                                                                                                                                                                          | 0.75655                                              |
| -2.93030 | -1.16899                                                                                                                                                                                                                                                                          | 0.56837                                              |
| -3.69044 | -1.89611                                                                                                                                                                                                                                                                          | 0.24542                                              |
| -3.25903 | -0.70245                                                                                                                                                                                                                                                                          | 1.51277                                              |
| -2.72108 | -0.10821                                                                                                                                                                                                                                                                          | -0.51397                                             |
| -1.48429 | 0.58761                                                                                                                                                                                                                                                                           | -0.20393                                             |
| -3.58996 | 0.56709                                                                                                                                                                                                                                                                           | -0.57476                                             |
| -2.59358 | -0.60366                                                                                                                                                                                                                                                                          | -1.49093                                             |
| -0.00413 | 2.44353                                                                                                                                                                                                                                                                           | 0.22860                                              |
| -1.32185 | 1.84753                                                                                                                                                                                                                                                                           | -0.20267                                             |
| 0.43185  | 2.97315                                                                                                                                                                                                                                                                           | -0.63780                                             |
| -0.21794 | 3.23255                                                                                                                                                                                                                                                                           | 0.97027                                              |
| 1.08749  | 1.59544                                                                                                                                                                                                                                                                           | 1.74519                                              |
| -2.12742 | 2.53767                                                                                                                                                                                                                                                                           | -0.50313                                             |
| -1.73579 | -2.63854                                                                                                                                                                                                                                                                          | 1.25730                                              |
|          | 2.96228<br>2.22688<br>0.91915<br>2.02437<br>2.85107<br>2.05795<br>3.19708<br>3.92155<br>0.08051<br>-1.66170<br>-2.93030<br>-3.69044<br>-3.25903<br>-2.72108<br>-1.48429<br>-3.58996<br>-2.59358<br>-0.00413<br>-1.32185<br>0.43185<br>-0.21794<br>1.08749<br>-2.12742<br>-1.73579 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

Table S3: Cartesian coordinates (Å) and total DFT energy (a.u.) of the Zinc acetylene complex Zn(HOC2H4NHC2H2NHC2H4S) with m/z 225.0035.

Energy (D3-B3LYP/def2-SVP): -2597.966636293

| С  | 2.96884  | -0.85473 | -0.45465 |
|----|----------|----------|----------|
| С  | 3.08277  | 0.34990  | 0.49596  |
| Ν  | 1.78346  | 0.52995  | 1.22523  |
| Н  | 3.24268  | 1.26555  | -0.09453 |
| Н  | 3.91917  | 0.24315  | 1.20523  |
| 0  | 1.83821  | -0.77239 | -1.26154 |
| Н  | 2.97997  | -1.78550 | 0.16223  |
| Н  | 3.89625  | -0.88479 | -1.05886 |
| Zn | 0.46206  | 0.06347  | -0.32697 |
| Н  | 1.73195  | -0.12884 | 2.00746  |
| Н  | 1.72228  | 1.46124  | 1.64129  |
| S  | -2.32172 | 1.58879  | 0.66789  |
| С  | -3.22383 | 0.06837  | 0.08415  |
| Н  | -4.11244 | 0.39234  | -0.47491 |
| Н  | -3.56414 | -0.38696 | 1.02727  |
| С  | -2.42032 | -0.90786 | -0.75997 |
| Ν  | -1.12915 | -1.29569 | -0.14678 |
| Н  | -2.20450 | -0.47187 | -1.74637 |
| Н  | -3.05911 | -1.79042 | -0.93204 |
| Н  | -0.71386 | -2.06906 | -0.67810 |
| Н  | -1.27595 | -1.66291 | 0.79800  |
| С  | -1.22165 | 1.81298  | -0.58306 |
| С  | -0.33874 | 1.90154  | -1.43578 |
| Н  | 0.26186  | 2.15915  | -2.29681 |

Table S4: Cartesian coordinates (Å) and total DFT energy (a.u.) of conformer 1 of the tin complex  $Sn(2)_2$  with m/z 270.9378.

Energy (D3-B3LYP/def2-SVP): -1278.758968114

| С  | 3.00349  | -0.01812 | 0.96144  |
|----|----------|----------|----------|
| С  | 2.68865  | 0.53907  | -0.42974 |
| Ν  | 1.38500  | 1.19744  | -0.45393 |
| Н  | 2.76349  | -0.27462 | -1.17682 |
| Н  | 3.47253  | 1.27760  | -0.66856 |
| S  | 1.65022  | -1.09475 | 1.68329  |
| Н  | 3.19282  | 0.79087  | 1.68107  |
| Н  | 3.88460  | -0.67357 | 0.92419  |
| Sn | -0.00364 | 0.29899  | 0.66564  |
| Н  | 1.21764  | 1.89984  | -1.16663 |
| S  | -2.11947 | 1.29323  | 1.19704  |
| С  | -3.11547 | -0.19850 | 0.73541  |
| Н  | -4.14642 | 0.17260  | 0.64137  |
| Н  | -3.09850 | -0.92354 | 1.56367  |
| С  | -2.67924 | -0.82941 | -0.58145 |
| Ν  | -1.26289 | -1.27389 | -0.51076 |
| Н  | -2.76096 | -0.09589 | -1.39649 |
| Н  | -3.33328 | -1.68300 | -0.82256 |
| Н  | -0.86562 | -1.42616 | -1.44266 |
| Н  | -1.17123 | -2.16777 | -0.01559 |

Table S5: Cartesian coordinates (Å) and total DFT energy (a.u.) of conformer 2 of the tin complex  $Sn(2)_2$  with m/z 270.9378.

Energy (D3-B3LYP/def2-SVP): -1278.760214134

| С  | -3.09576 | -0.02391 | 0.18591  |
|----|----------|----------|----------|
| С  | -2.59768 | -0.33413 | -1.23823 |
| Ν  | -1.29578 | -1.00938 | -1.31792 |
| Н  | -2.54339 | 0.61602  | -1.79786 |
| Н  | -3.35707 | -0.95730 | -1.73709 |
| S  | -1.85158 | 0.89861  | 1.22941  |
| Н  | -3.38257 | -0.93654 | 0.72921  |
| Н  | -3.96805 | 0.64429  | 0.14027  |
| Sn | -0.08090 | -0.31343 | 0.16430  |
| Н  | -1.36485 | -2.02294 | -1.40564 |
| S  | 2.06992  | -1.17562 | 0.79458  |
| С  | 2.97314  | -0.31445 | -0.57797 |
| Н  | 4.02955  | -0.33587 | -0.27228 |
| Н  | 2.88268  | -0.90264 | -1.50405 |
| С  | 2.53199  | 1.13029  | -0.78078 |
| Ν  | 1.08364  | 1.19801  | -1.11073 |
| Н  | 3.12454  | 1.59182  | -1.58667 |
| Н  | 2.69246  | 1.70897  | 0.14014  |
| Н  | 0.90175  | 0.92746  | -2.08429 |
| Н  | 0.70935  | 2.14443  | -0.99406 |
|    |          |          |          |

Table S6: Cartesian coordinates (Å) and total DFT energy (a.u.) of the mer-isomer of the tin complex  $Sn(2)_3$  with m/z 347.9676.

Energy (D3-B3LYP/def2-SVP): -1812.038136774

| С  | -1.44629 | -2.87859 | -0.72814 |
|----|----------|----------|----------|
| С  | -2.33521 | -2.15790 | 0.28072  |
| S  | -1.34801 | -1.30347 | 1.57478  |
| Н  | -2.96627 | -2.88705 | 0.80809  |
| Н  | -2.99598 | -1.43500 | -0.22224 |
| Ν  | -0.58590 | -1.91642 | -1.44352 |
| Н  | -2.07270 | -3.44705 | -1.43635 |
| Н  | -0.79659 | -3.59279 | -0.20163 |
| Sn | 0.09366  | -0.07429 | 0.00725  |
| S  | -1.44639 | 1.34017  | -1.27995 |
| С  | -1.87081 | 2.44463  | 0.12826  |
| Н  | -2.55170 | 1.92645  | 0.82249  |
| Н  | -2.41515 | 3.29784  | -0.30062 |
| С  | -0.63107 | 2.94949  | 0.85466  |
| Ν  | 0.11592  | 1.82084  | 1.46476  |
| Н  | -0.91661 | 3.67871  | 1.63149  |
| Н  | 0.04028  | 3.45085  | 0.14311  |
| Н  | -0.34767 | 1.51736  | 2.32589  |
| Н  | 1.06660  | 2.10425  | 1.71027  |
| Ν  | 1.81314  | -0.88171 | 1.71106  |
| S  | 2.19219  | 0.23734  | -1.20634 |
| С  | 3.33902  | -0.79784 | -0.20884 |
| С  | 3.18726  | -0.57777 | 1.29142  |
| Н  | 1.63640  | -1.88936 | 1.73892  |
| Н  | 4.35197  | -0.51128 | -0.52665 |
| Н  | 3.20525  | -1.86130 | -0.46505 |
| Н  | 3.92657  | -1.19415 | 1.83209  |
| Н  | 3.39370  | 0.47693  | 1.52923  |
| Н  | 1.61785  | -0.54971 | 2.65716  |
| Н  | -1.11436 | -1.43252 | -2.17542 |
| Н  | 0.20575  | -2.36748 | -1.90612 |

Table S7: Cartesian coordinates (Å) and total DFT energy (a.u.) of the fac-isomer of the tin complex  $Sn(2)_3$  with m/z 347.9676.

Energy (D3-B3LYP/def2-SVP): -1812.027535626

| С  | -0.76169 | -3.17328 | 0.08145  |
|----|----------|----------|----------|
| С  | -1.93491 | -2.34806 | 0.58712  |
| Ν  | -1.45367 | -1.12584 | 1.27071  |
| Н  | -2.55485 | -2.95375 | 1.26939  |
| Н  | -2.56510 | -2.02208 | -0.25296 |
| S  | 0.28010  | -2.29283 | -1.16047 |
| Н  | -1.14406 | -4.07268 | -0.42202 |
| Н  | -0.13588 | -3.51532 | 0.92321  |
| Sn | -0.00383 | 0.00692  | -0.32021 |
| Н  | -2.23594 | -0.48736 | 1.42787  |
| S  | -2.06389 | 0.93185  | -1.29577 |
| С  | -2.41044 | 2.21509  | -0.01921 |
| Н  | -3.03291 | 1.79317  | 0.78898  |
| Н  | -3.01625 | 2.98545  | -0.51767 |
| С  | -1.15500 | 2.86110  | 0.55130  |
| Ν  | -0.29963 | 1.85316  | 1.22027  |
| Н  | -1.43064 | 3.66328  | 1.25627  |
| Н  | -0.56323 | 3.31190  | -0.25878 |
| Н  | -0.64925 | 1.64503  | 2.15880  |
| Н  | 0.65248  | 2.21304  | 1.31879  |
| Ν  | 1.73708  | -0.59812 | 1.33748  |
| S  | 1.87363  | 1.28193  | -1.24413 |
| С  | 3.21236  | 0.32479  | -0.42125 |
| С  | 2.98895  | 0.14750  | 1.07478  |
| Н  | 1.85687  | -1.57772 | 1.05797  |
| Н  | 4.14067  | 0.88910  | -0.59006 |
| Н  | 3.32407  | -0.65171 | -0.91801 |
| Н  | 3.85203  | -0.37672 | 1.51987  |
| Η  | 2.91143  | 1.13180  | 1.56192  |
| Н  | 1.52176  | -0.59568 | 2.33611  |
| Н  | -1.06490 | -1.36088 | 2.18758  |