
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information High-Performance Organic Light-Emitting Diodes with Natural White Emission Based on Thermally Activated Delayed Fluorescence Emitters

Wei Luo,^a Tong-Tong Wang,^a Xing Chen,^a Kai-Ning Tong,^a Wei He,^a Shuang-Qiao Sun,^a Yi-Jie Zhang,^a Liang-Sheng Liao^{ab} and Man-Keung Fung^{*ab}

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University,
 Suzhou, Jiangsu 215123, P. R. China. E-mail: mkfung@suda.edu.cn
 Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research
 Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu, P. R. China

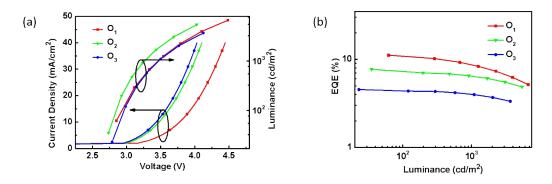


Figure S1. (a) Current density-voltage-luminance characteristics of devices B_1 - B_3 . (b) EQE-luminance characteristics of these devices.

Table S1. Summary of the blue device performance.

Device	V _{on} (V) ^a	Concentration	EQE _{max} (%) ^b	PE _{max} (Im/W) ^b	CE _{max} (cd/A) ^b	CIE (X, Y)°
B ₁	4.42	10%	11.7	11.4	17.5	(0.16, 0.20)
B_2	4.26	15%	14.5	16.1	22.7	(0.16, 0.21)
B_3	3.91	20%	16.9	22.0	28.0	(0.16, 0.22)

^aV_{on} is the voltage at 0.2 mA/cm², ^bMaximum external quantum efficiency, maximum power efficiency and maximum current efficiency; ^cCommission Internationale de L'Eclairage measured at 1000 cd/m².

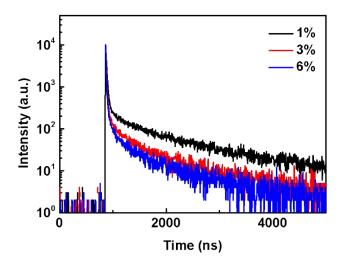
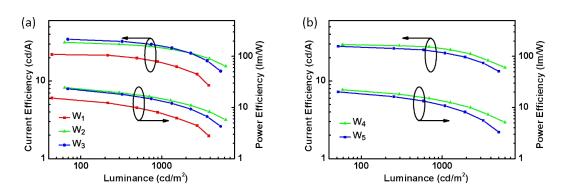
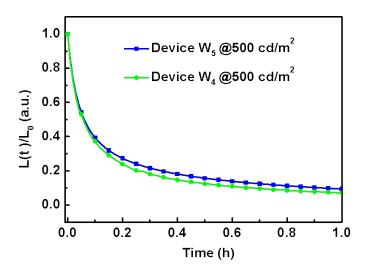
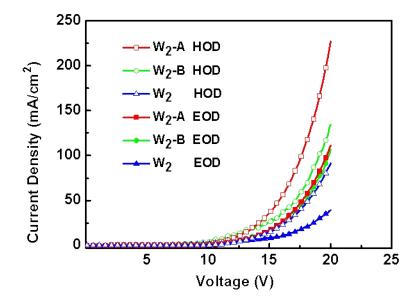


Figure S2. (a) Current density-voltage-luminance characteristics of devices O_1 - O_3 . (b) EQE-luminance characteristics of these devices


Table S2. Summary of the orange devices.

Device	V _{on} (V) ^a	Concentration	EQE _{max} (%) ^b	PE _{max} (Im/W) ^b	CE _{max} (cd/A) ^b	CIE (X, Y)°
O ₁	2.85	1%	11.1	35.6	32.0	(0.43, 0.47)
O_2	2.73	3%	7.7	22.1	21.5	(0.49, 0.49)
O ₃	2.78	6%	4.5	13.0	12.5	(0.53, 0.47)


^aV_{on} is the voltage at 0.2 mA/cm², ^bMaximum external quantum efficiency, maximum power efficiency and maximum current efficiency; ^cCommission Internationale de L'Eclairage measured at 1000 cd/m².


Figure S3. Transient photoluminescence decay curves of 4CzTPN-Ph doped in DMAC-DPS with doping concentrations of 1, 3, and 6 wt% measured at 470 nm with an excitation wavelength of 350 nm.

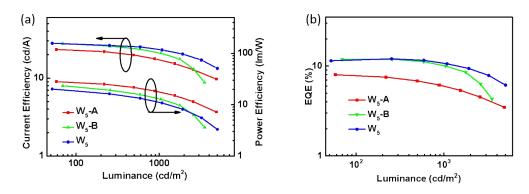

Figure S4. Current efficiency-luminance-power efficiency characteristics of devices: (a) W_{1} , W_{2} and W_{3} . (b). W_{4} and W_{5} .

Figure S5. Devices lifetime of W_4 and W_5 at 500 cd/m².

Figure S6. Current density-voltage characteristics of the hole-only devices (HOD) with the structure of ITO/HAT-CN (10 nm)/TAPC (40 nm)/EML (based on W₅, W₅-A and W₅-B)/TAPC (40 nm) /HAT-CN (10 nm)/Al (120 nm), and electron-only devices (EOD) with the structure of ITO/BPhen (40 nm)/EML (based on W₅, W₅-A and W₅-B)/ BPhen (40 nm) /Liq (2 nm)/Al (120 nm).

Figure S7. (a) Current efficiency-luminance-power efficiency characteristics of W_5 -A, W_5 -B and W_5 . (b) EQE-luminance characteristics of the three device.