Electronic Supplementary Information

for

Enhancement of Thermoelectric Performance of DPP based Polymer by Introducing 3,4-Ethylenedioxythiophene Electron-rich Building Block

Zhitian Liu^a, Yanchuan Hu^a, Pengcheng Li^{*a}, Jing Wen^a, Jungang He^a and Xiang Gao^a

^a Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China

* E-mail: pengchengli2013@gmail.com; pengchengli@wit.edu.cn

GPC results

Figure S1 GPC results of PDPP5T

Figure S2 GPC results of PDPP-4T-EDOT

Thermal property

The thermal properties of PDPP5T and PDPP-4T-EDOT were studied by thermogravimetric analysis (TGA). TGA analysis shows that both polymers have good thermal stability with decomposition temperature at 5% weight loss higher than 400 $^{\circ}$ C under N₂.

Figure S3. TGA curves of PDPP5T and PDPP-4T-EDOT

Electrical conductivity of doped polymer films

Figure S4. Conductivity of doped PDPP5T and PDPP-4T-EDOT films with dopant concentration from 0.25 mM to 20 mM

Figure S5. Conductivity of doped PDPP5T and PDPP-4T-EDOT films versus their $I_{polaron} / I_{\pi-\pi^*}$

X-ray diffraction of polymer films

Figure S6 XRD patterns for PDPP-5T and PDPP-4T-EDOT films before and after doping.