Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information Blue-green-emitting Cationic Iridium Complexes with Oxadiazole-type Counter-anions and Their Use for Highly Efficient Solution-processed Organic Light-emitting Diodes

Xianwen Meng, Pei Wang, Rubing Bai and Lei He*

College of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry

of Education, Hubei International Scientific and Technological Cooperation Base of

Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079,

People's Republic of China.

E-mail: <u>helei@mail.ccnu.edu.cn</u>

Scheme S1. ¹H-NMR spectrum of complex1 in DMSO-*d*₆.

Scheme S2. ¹³C-NMR spectrum of complex 1 in DMSO-*d*₆.

Scheme S3. ¹H-NMR spectrum of complex 2 in DMSO-*d*₆.

Scheme S4. ¹³C-NMR spectrum of complex 2 in DMSO-*d*₆.

Scheme S5. ¹H-NMR spectrum of complex 3 in DMSO-*d*₆.

Scheme S6. ¹³C-NMR spectrum of complex 3 in DMSO-*d*₆.

Figure S1. PL spectra of a) complex 1, b) complex 2 and c) complex 3 in degassed

CH₃CN solution under different excitation wavelength.

Figure S2. PL spectra of a) complex 1, b) complex 2 and c) complex 3 in 2 wt.% doped PMMA films under different excitation wavelength. The sharp peak at 380 nm results from residual excitation.

Figure S3. PL spectra of the emissive layers of OLEDs using complexes R and 1-3.

Scheme S7. Energy level (in eV) diagrams for OLEDs based on complexes R and 1-3. The LUMO levels of OXD-SO₃⁻, tBuOXD-SO₃⁻ and tBuOXD-BF₃⁻ were calculated from their electrochemical reduction potentials and the HOMO levels were calculated on the basis of LUMO levels and optical band gaps.

Figure S4. a) Current efficiency and b) EQE versus brightness curves for OLEDs based on complexes R and 1-3.

Solution-processed OLEDs							
Color	Von	η _{c,max}	EQE _{max}	B _{max}	EL	CIE	Ref.
	(V)	(cd/A)		(cd/m^2)	λ (nm)	(x, y)	
Blue	4.1	2.5	N. R.	1950	458	(0.16, 0.27)	1
	6.2	17.2	7.5%	12800	474, 500	(0.19, 0.38)	2
	6.8	12.6	6.3%	7000	472, 488	(0.19, 0.35)	3
Blue-	6.1	22.4	8.2%	24000	486, 512	(0.23, 0.50)	2
green	4.2	24.3	9.7%	30300	484, 508	(0.19, 0.47)	4
	6.5	24.5	9.8%	17800	484, 506	(0.21, 0.48)	5
	N. R.	12.4	N. R.	5700	480, 507	(0.21, 0.48)	6
	7.4	25.8	8.8%	30466	508 nm	(0.27, 0.49)	7
	6.4	N. R.	5.4%	1790	N. R.	(0.25, 0.48)	8
	N. R.	17.1	6.8%	14200	482, 508	(0.21, 0.48)	9
	4.0	37.6	15.2%	12000	481, 510	(0.18, 0.49)	This
							work
Green	4.4	25.3	8.1%	38500	526	(0.34, 0.56)	4
	5.8	20.8	6.3%	N. R.	527	(0.29, 0.58)	10
Yellow	12	22.5	7.5%	N. R.	540	N. R.	11
	4.3	30.6	10.2%	8865	548	(0.41, 0.55)	12
	4.7	17.5	6.9%	13019	572	(0.44, 0.54)	13
	9.1	17.4	6.4%	15560	N. R.	(0.47, 0.51)	14
	N. R.	20.4	11.4%	11032	N. R.	(0.44, 0.54)	15
Orange	6.5	4.2	3.2%	6300	620	(0.61, 0.38)	4
Vacuum-evaporated OLEDs							
Color	Von	$\eta_{c,max}$	EQE _{max}	B _{max}	EL	CIE	Ref.
	(V)	(cd/A)		(cd/m^2)	λ (nm)	(x, y)	
Blue	7.0	1.5	1.5%	5700	452	(0.18, 0.19)	16
	3.5	23.4	11%	8195	N. R.	(0.21, 0.33)	17
Blue-	3.0	24.5	9.8%	11500	482, 506	(0.21, 0.44)	18
green	2.5	26.4	10.4%	11000	500	(0.24, 0.45)	19
	2.9	29.1	11.3%	15000	500	(0.27, 0.50)	20
Green	5.7	11.3	3.7%	17900	528	(0.37, 0.56)	21
Yellow	5.0	19.7	6.5%	15611	565	N. R.	22
	2.3	40.8	13.4%	>27300	556	(0.42, 0.54)	19
	2.3	46.5	14.8%	>27300	556	(0.43, 0.55)	23
	2.3	48.9	15.8%	>27300	558, 586	(0.48, 0.51)	23
	2.4	41.8	14.7%	>27300	560, 592	(0.49, 0.49)	24
	2.3	51.9	16.4%	>27300	542	(0.37, 0.58)	19
Orange	2.4	18	11.1%	18800	588, 624	(0.59, 0.40)	23
	3.3	17.8	10.5%	25035	589, 622	(0.60, 0.40)	25
Red	2.6	8.3	9.8%	1620	626	(0.65, 0.34)	19

 Table S1. Summary of performances of OLEDs using cationic iridium complexes.

References

- 1 L. He, L. Duan, J. Qiao, D. Q. Zhang, G. F. Dong, L. D. Wang and Y. Qiu, *Org. Electron.*, 2009, **10**, 152.
- 2 L. He, Y. Lan, D. X. Ma, X. Z. Song and L. Duan, J. Mater. Chem. C, 2018, 6, 1509.
- 3 X. W. Meng, R. B. Bai, X. X. Wang, F. F. Pan and L. He, *Dyes. Pigments*, 2019, **165**, 458.
- 4 L. He, L. A. Duan, J. A. Qiao, D. Q. Zhang, L. D. Wang and Y. Qiu, *Org. Electron.*, 2010, **11**, 1185.
- 5 N. Z. Luo, Y. Lan, R. R. Tang, L. He and L. Duan, *Chem. Commun.*, 2016, **52**, 14466.
- 6 D. X. Ma, L. Duan, Y. G. Wei and Y. Qiu, *Chem. Eur. J*, 2014, **20**, 15903.
- 7 J. M. Fernandez-Hernandez, C. H. Yang, J. I. Beltran, V. Lemaur, F. Polo, R. Frohlich, J. Cornil and L. De Cola, *J. Am. Chem. Soc.*, 2011, **133**, 10543.
- 8 A. F. Henwood, A. K. Bansal, D. B. Cordes, A. M. Z. Slawin, I. D. W. Samuel and E. Zysman-Colman, *J. Mater. Chem. C*, 2016, **4**, 3726.
- 9 D. X. Ma, C. Zhang, Y. Qiu and L. Duan, J. Mater. Chem. C, 2016, 4, 5731.
- 10 M. T. Sajjad, N. Sharma, A. K. Pal, K. Hasan, G. Xie, L. S. Kölln, G. S. Hanan, I. D. W. Samuel and E. Zysman-Colman, J. Mater. Chem. C, 2016, 4, 8939.
- 11 E. A. Plummer, A. van Dijken, H. W. Hofstraat, L. De Cola and K. Brunner, *Adv. Funct. Mater.*, 2005, **15**, 281.
- 12 H. J. Tang, Y. H. Li, Q. L. Chen, B. Chen, Q. Q. Qiao, W. Yang, H. B. Wu and Y. Cao, *Dyes. Pigments*, 2014, **100**, 79.
- 13 H. J. Tang, Z. Y. Chen, L. Y. Wei, J. S. Miao, G. Y. Meng, Y. H. He and H. B. Wu, *Dyes. Pigments*, 2016, **131**, 340.
- 14 F. L. Zhang, C. F. Si, D. H. Wei, S. S. Wang, D. P. Zhang, S. Z. Li, Z. Y. Li, F. Q. Zhang, B. Wei, G. X. Cao and B. Zhai, *Dyes. Pigments*, 2016, **134**, 465.
- 15 H. J. Tang, L. Y. Wei, G. Y. Meng, Y. H. Li, G. Z. Wang, F. R. Yang, H. B. Wu, W. Yang and Y. Cao, *Opt. Mater.*, 2014, **37**, 679.
- 16 D. X. Ma, Y. Qiu and L. Duan, Adv. Funct. Mater., 2016, 26, 3438.
- 17 N. Darmawan, C. H. Yang, M. Mauro, R. Frohlich, L. De Cola, C. H. Chang, Z. J. Wu and C. W. Tai, *J. Mater. Chem. C*, 2014, **2**, 2569.
- 18 D. X. Ma, Y. Qiu and L. Duan, *Chempluschem*, 2018, 83, 211.
- 19 D. Ma, C. Zhang, R. Liu, Y. Qu and L. Duan, ACS Appl. Mat. Interfaces, 2018, 10, 29814.
- 20 C. Zhang, D. X. Ma, R. H. Liu and L. Duan, J. Mater. Chem. C, 2019, 7, 3503.
- 21 D. X. Ma, C. Zhang, Y. Qiu and L. Duan, Chem. Eur. J, 2016, 22, 15888.
- 22 W. Y. Wong, G. J. Zhou, X. M. Yu, H. S. Kwok and Z. Y. Lin, *Adv. Funct. Mater.*, 2007, **17**, 315.

- 23 D. X. Ma, R. H. Liu, C. Zhang, Y. Qiu and L. Duan, Acs Photonics, 2018, 5, 3428.
- 24 R. H. Liu, D. X. Ma, C. Zhang and L. Duan, *Dalton Trans.*, 2019, 48, 9669.
- 25 L. Ding, C. X. Zang, H. T. Mao, G. G. Shan, L. L. Wen, H. Z. Sun, W. F. Xie and Z. M. Su, *Chem. Commun.*, 2018, **54**, 11761.