Supporting Information for:

Origin of the Abnormal Reduction of the Dielectric Response for ReCOB Crystals and its Mechanism: Theoretical and Experimental Exploration

Xinyu Lu,¹Lili Li,¹ Shiwei Tian,¹ Yanlu Li,¹* Fapeng Yu,¹* Xiufeng Cheng,¹ Xian Zhao^{1,2}

¹State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

²Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao 266237, China

*Correspondence authors

Emails: liyanlu@sdu.edu.cn, fapengyu@sdu.edu.cn

Table S1 Bond lengths (Å) and angles (deg.) of ReO₆, Ca1O₆ and Ca2O₆ polyhedrons in YCOB, PrCOB, and LaCOB crystals.

Figure S1 Calculated band gaps of YCOB(a1-a3), PrCOB(b), and LaCOB(c1,c2) as a function of U_{eff} . The red points correspond to the U_{eff} for *d* or *f* orbitals of rare earth ions, while the blue points correspond to the U_{eff} including O 2*p* states.

Figure S2 Partial density of states (PDOSs) of YCOB (a), PrCOB (b), and LaCOB (c) within GGA-PBE, HSE06 and GGA+U methods.

Figure S3 Density of states of decomposed Pr 4f orbitals (left) and the structural of PrO6 (right).

Table S2 Atomic coordinates and equivalent isotropic displacement for ReCOB (Re = Y, Pr, La). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3 Calculated dielectric constants (ε_{ij}), and their electronic ($\varepsilon_{\infty,ij}$) and phonon ($\varepsilon_{ph,ij}$) contributions for the neutral defects in ReCOB and the charged defects in LaCOB. The calculated values for the pristine crystals and the experimental values are also listed for comparison.

ReO ₆	Re-O1	Re-O2	∠O1ReO2	Re-O4	∠O4ReO	$14 r^{\text{Re}}(+3)$
УСОВ	2.26 /2.22	2.15	177.73 /80.05	2.26	139.31	0.900
PrCOB	2.40 /2.34	2.24	177.01 /82.40	2.40	135.50	0.990
LaCOB	2.43 /2.36	2.24	176.65 /82.34	2.41	135.57	1.032
Ca1O ₆	Ca1-O4	Cal-O5	∠04Ca105	Ca1-O3	Cal-O6	∠O3Ca1O6
YCOB	2.24 /2.21	2.63 /2.31	174.65 /84.64	2.24	2.33	129.30
PrCOB	2.24 /2.20	2.60 /2.30	176.60 /81.34	2.25	2.39	128.99
LaCOB	2.24 /2.21	2.58/ 2.30	176.92 /80.90	2.25	2.40	128.75
Ca2O ₆	Ca2-O3	Ca2-O6	∠O3Ca2O6	Ca2-O2	Ca2-O5	∠O2Ca2O5
УСОВ	2.23 /2.21	2.26 /2.23	169.04 /81.64	2.18	2.23	171.72
PrCOB	2.26 /2.22	2.30 /2.25	173.56 /80.49	2.17	2.23	174.14
LaCOB	2.27 /2.23	2.32 /2.25	173.89 /80.33	2.17	2.23	174.53

Table S1 Bond lengths (Å) and angles (deg.) of ReO_6 , Ca1O_6 and Ca2O_6 octahedrons in YCOB, PrCOB, and LaCOB crystals.

Figure S1 Calculated band gaps of YCOB(a1-a3), PrCOB(b), and LaCOB(c1,c2) as a function of U_{eff} . The red points correspond to the U_{eff} for *d* or *f* orbitals of rare earth ions, while the blue points correspond to the U_{eff} including O 2*p* states.

Figure S2 Partial density of states (PDOSs) of YCOB (a), PrCOB (b), and LaCOB (c) within GGA-PBE, HSE06 and GGA+U methods.

Figure S3 Density of states of decomposed Pr 4f orbitals (left) and the structural of PrO6 (right).

Atom	X	у	Z	$U_{ m eq}$		
YCa ₄ O(BO ₃) ₃						
L*	0.1703(8)	0.5000	0.1253(14)	0.004(15)		
M^*	0.5310(10)	0.3877(5)	-0.1991(19)	0.004(19)		
Ca(1)	-0.0863(11)	0.3186(6)	0.4776(2)	0.006(2)		
O (1)	-0.0253(6)	0.5000	0.5259(13)	0.009(11)		
O (2)	0.3445(6)	0.5000	0.7094(14)	0.006(9)		
O (3)	0.7117(4)	0.4256(19)	-0.6210(8)	0.007(7)		
O (4)	0.0909(4)	0.3589(19)	0.0569(8)	0.006(6)		
O (5)	0.7028(4)	0.2691(19)	-0.1498(8)	0.008(6)		
O (6)	0.3852(4)	0.3259(18)	0.2475(8)	0.007(6)		
B (1)	-0.1992(9)	0.5000	0.4300(2)	0.004(13)		
B (2)	0.2257(7)	0.3055(3)	0.0506(14)	0.005(10)		

Table S2 Atomic coordinates and equivalent isotropic displacement for ReCOB (Re = Y, Pr, La). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

*L=0.87Y+0.13Ca;M=0.07Y+0.93Ca

	I	$PrCa_4O(BO_3)_3$		I
Pr	0.3593(3)	0.5000	0.1535(4)	0.008(9)
Ca(1)	0.6284(9)	0.3187(5)	-0.1839(19)	0.010(17)
Ca(2)	0.0041(9)	0.3863(4)	0.4858(19)	0.007(17)
O (1)	0.5686(6)	0.5000	-0.2363(14)	0.014(12)
O (2)	0.1843(6)	0.5000	0.5679(13)	0.006(9)
O (3)	0.8276(3)	0.5739(16)	-0.0899(7)	0.011(6)
O (4)	0.455(3)	0.3542(17)	0.2405(8)	0.011(6)
O (5)	0.3290(3)	0.2304(16)	0.4338(7)	0.013(6)
O (6)	0.6613(3)	0.1700(16)	0.0449(7)	0.012(6)
B (1)	0.7427(7)	0.5000	-0.1379(16)	0.008(12)
B (2)	0.3146(5)	0.3057(3)	0.2408(12)	0.007(8)

LaCa ₄ O(BO ₃) ₃							
L^*	0.3380(4)	0.5000	0.1699(5)	0.010(12)			
M^*	0.0660(10)	0.3196(5)	0.5030(2)	0.012(3)			
Ca(1)	0.6911(10)	0.3860(5)	-0.1650(2)	0.007(2)			
O (1)	0.1228(6)	0.5000	0.5602(15)	0.016(13)			
O (2)	0.5157(6)	0.5000	-0.2453(15)	0.010(11)			
O (3)	0.8650(4)	0.4257(17)	-0.5898(8)	0.012(6)			
O (4)	0.2386(4)	0.3524(18)	0.0782(8)	0.013(7)			
O (5)	0.3683(4)	0.2295(17)	-0.1104(8)	0.015(6)			
O (6)	0.5320(4)	0.3307(18)	0.2749(8)	0.014(7)			
B (1)	0.9493(8)	0.5000	-0.5415(17)	0.006(13)			
B (2)	0.3799(6)	0.3049(3)	0.0806(12)	0.008(9)			
* <i>L</i> =0.96 <i>La</i> +0.04 <i>Ca</i> ; <i>M</i> =0.02 <i>La</i> +0.98 <i>Ca</i>							

Table S3 Calculated dielectric constants (ε_{ij}), and their electronic ($\varepsilon_{\infty,ij}$) and phonon ($\varepsilon_{ph,ij}$) contributions for the neutral defects in ReCOB and the charged defects in LaCOB. The calculated values for the pristine crystals and the experimental values are also listed for comparison.

			ij	
		11	22	33
	YCC)B		
	€∞,ij	2.31	2.31	2.26
Ca _Y	$arepsilon_{ m ph,ij}$	6.92	9.49	7.23
	Eij	9.23	11.80	9.49
	€∞,ij	3.55	3.74	2.98
Y _{Ca2}	€ _{ph,ij}	6.93	8.80	6.66
	\mathcal{E}_{ij}	10.48	12.54	9.64
Pristine		8.10	9.74	7.72
Expt.		9.65	12.00	9.55
	PrCC)B		
	$\mathcal{E}_{\infty,\mathrm{ij}}$	3.89	3.43	3.45
Ca _{Pr}	$m{arepsilon}_{ m ph,ij}$	4.81	7.35	6.06
	Eij	8.70	10.78	9.51
	$\mathcal{E}_{\infty,\mathrm{ij}}$	4.92	4.82	3.94
Pr _{Ca1}	$arepsilon_{ m ph,ij}$	6.58	11.70	7.55
	Eij	11.50	16.52	11.49
	€∞,ij	4.19	3.86	3.72
Pr _{Ca2}	$arepsilon_{ m ph,ij}$	5.95	6.88	5.47
	Eij	10.14	10.74	9.19
Pristine		9.25	16.69	8.41
Expt.		9.60	15.30	10.00
	LaCo	OB		
Neutral Ca _{La}	€∞,ij	2.57	2.57	2.58

		$arepsilon_{ m ph,ij}$	9.22	15.78	11.04
		E _{ij}	11.79	18.35	13.62
		€∞,ij	2.95	2.87	2.85
	La _{Ca1}	$arepsilon_{ m ph,ij}$	5.37	6.51	5.31
		${m arepsilon_{ m ij}}$	8.32	9.38	8.16
		€∞,ij	3.93	3.18	3.09
	La _{Ca2}	$arepsilon_{ m ph,ij}$	8.65	8.69	6.48
		${m arepsilon_{ m ij}}$	12.58	11.87	9.57
		€∞,ij	2.63	2.69	2.61
	Ca _{La} -	$arepsilon_{ m ph,ij}$	9.52	14.67	13.72
		$arepsilon_{ m ij}$	12.15	17.36	16.33
		€∞,ij	2.60	2.61	2.60
Charged .	La_{Cal}^+	$arepsilon_{ m ph,ij}$	8.78	12.27	10.09
		Eij	11.38	14.88	12.69
	La _{Ca2} +	€∞,ij	2.60	2.61	2.59
		$arepsilon_{ m ph,ij}$	9.15	12.73	10.13
		${\cal E}_{ m ij}$	11.75	15.34	12.72
	Pristine		8.68	10.26	8.24
	Expt.		9.40	15.00	9.60