Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Quantitative Understanding of the Ultra-Sensitive and Selective Detection of Dopamine using Graphene Oxide/WS₂ Quantum Dot Hybrid

Ruma Das^a, Abhilasha Bora^a, and P. K. Giri^{a, b*}

^aDepartment of Physics, Indian Institute of Technology Guwahati, Guwahati -781039, India.

^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati -781039, India.

Fig. S1: (a) FESEM image of GO with atomic % of elemental compositions in the inset. (b, c) Elemental mapping on the same GO sheets for C and O elements, respectively.

^{*} Corresponding author, email: giri@iitg.ac.in

Fig. S2: XRD pattern of pristine graphite flakes.

Fig. S3: (a) HAADF image of WS₂ QDs and (b, c) the corresponding elemental mapping of the sample showing the spatial distribution of W and S, respectively. (d) FESEM image of WS₂/GO hybrid. (e-h) Elemental mapping on (d) for C, O, W, and S, respectively, and (i) the corresponding EDX spectra with atomic % of elemental compositions.

Fig. S4: XRD pattern of WS₂/GO hybrid. The peak position of GO and WS₂ are symbolized by '*' and '#', respectively.

Fig. S5: XPS spectra of (a) C 1s of GO and (b) S 2p of WS₂ before and after WS₂/GO hybrid formation.

Fig. S6: (a) Absorption spectra of WS_2 QDs and GO sheets. The inset shows the Tauc plot for WS_2 QDs considering its direct band gap. (b) Comparison of the PL spectra of bare WS_2 QDs and GO sheets under 400 nm excitation.

Fig. S7: The Gaussian deconvolution of PL spectrum of WS₂ QDs at λ_{ex} =400 nm.

Fig. S8: (a) Normalized PL spectra of WS_2/GO hybrid at different pH. The inset shows the variation of the maximum peak position with pH. (b) Stability of the WS_2/GO hybrid with time.

Fig. S9: Optimization of DA sensing: (a) GO concentration, (b) pH value and (c) reaction time with fixed concentration of WS_2 QDs and DA.

Fig. S10: The linear variation of I_0/I with DA concentration 1–10 nM with LOD 30 nM limit of detection (LOD).

Fig. S11: (a) The change of the PL intensity of WS₂ QDs with the presence of different concentration of DA. Comparison of PL quenching efficiency of (b) GO, (c) GQDs and (d) S-GQDs with fixed concentration of WS₂ QDs and 10 μ M DA.

Fig. S12: A large separation between the absorption of DA and the PL of WS_2/GO discards the possibility of FRET process between them.

Table S1: Details of the deconvoluted high resolution XPS spectra of O 1s for GO, WS $_2$ /GO and WS $_2$ /GO/DA.

Sample	Peak position (eV)	Peak identity	% of contribution
	530.6	СООН	12
GO	532.2	C=O	55
	533.4	С-ОН/С-О-С	33
	530.5	СООН	12
WS ₂ /GO	532.0	C=O	66
	533.0	С-ОН/С-О-С	22
	530.4	СООН	8
WS ₂ /GO/DA	531.8	C=O	81
	532.9	С-ОН/С-О-С	11

Table S2: Details of the Raman modes of different samples.

Sample	Raman bands (cm ⁻¹)					
	D	М	G	D'	E _{2g}	A _{1g}
GO	1356	1528	1586	1612	-	-
WS ₂ QD	-	-	-	-	357.3	421.4
WS ₂ /GO	1356	1529	1577	1610	357.3	421.6
WS ₂ /GO/DA	1356	1531	1582	1611	357.3	422.0
Peak identity	Defects (GO)	Metallic (GO)	In-plane vibration of C=C bond (GO)	Structural disorder /edges (GO)	In-plane vibration of W-S bond (WS ₂)	Out-of- plane vibration of W-S bond (WS ₂)

Sample Code	τ_1 (ns)	$\tau_2(ns)$	$B_1 \%$	$B_2 \%$	τ_{avg} (ns)
WS ₂ QD	2.1	9.6	34	66	8.8
WS ₂ /GO	1.7	8.8	34	66	8.2
WS ₂ /DA	2.3	9.7	39	61	8.8
WS ₂ /GO/DA	1.5	4.7	15	85	4.6

Table S3: Summary of the fitting parameters of time resolved PL decay data of WS_2 , GO and their hybrid in absence and in presence of DA.

Table S4: Detection of DA spiked in Brahmaputra river water and blood serum samples.

Sample	Added concentration of DA (nM)	Found concentration of DA (nM)	Recovery (%)
Brahmaputra river water	1	1 ± 0.007	100
	10	15 ± 0.09	150
	100	81 ± 0.60	81
	1000	720 ± 2.0	72
Blood serum	1	1 ± 0.001	100
	10	10 ± 0.010	100
	100	80 ± 0.2	80
	1000	760 ± 4.0	76