Construction of mixed-dimensional WS₂/Si heterojunctions

for high-performance infrared photodetection and imaging

applications

Zhaoyang Wang,^a Xiwei Zhang,^b Di Wu,^{*a} Jiawen Guo,^a Zhihui Zhao,^a Zhifeng Shi,^a

Yongtao Tian,^a Xiaowen Huang,*c and Xinjian Li^a

^aSchool of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China.

E-mail: wudi1205@zzu.edu.cn

^bCollege of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000, PR China

^cState Key Laboratory of Biobased Material and Green Papermaking; Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Email: huangxiaowen2013@gmail.com

Fig. S1 I-V curves of (a) Au/WS₂/Au and (b) In-Ga/Si/In-Ga.

Fig. S2 I-V curves of WS_2/Si heterojunction devices with WS_2 thickness of 5.5, 8.1 and 12 nm in dark and under 980 nm.

Fig. S3 Time-dependent photoresponse of the WS_2/Si heterojunction under 980 nm light with varying light intensities in linear scale.

Fig. S4 Responsivity and specific detectivity of the WS_2/Si heterojunction at a voltage bias of -5 V.

Fig. S5 Response speeds of the WS_2/Si heterojunction at a frequency of 30 kHz.