Supporting Information

Red-emissive Poly(phenylene vinylene)-derivated

Semiconductors with Well-balanced Ambipolar

Electrical Transporting Property

Yihan Zhang,^{ac} Jun Ye,^d Zheyuan Liu,^{bc} Qingqing Liu,^{ac} Xiaofei Guo,^{ab} Yanfeng Dang,^b Jianqi

Zhang,^e Zhixiang Wei,^e Zhixiang Wang,^c Zhaohui Wang, ^{af} Huanli Dong, *a Wenping Hu^{ab}

- ^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- ^b Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072, China.
 - ^c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^d Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore.

^e Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.

^fDepartment of Chemistry, Tsinghua University, Beijing 100084, China.

Content

- 1. GPC experiments
- 2. Thermal stability
- **3.** Electrochemical properties
- 4. NMR experiments
- 5. Device fabrication

6. Transfer and output curves of PBPPV-based transistors constructed under different experimental conditions

7. Table S1 A summary of charge carrier mobility for PPV-based conjugated polymers reported so far

8. Stability test for PBPPV-based devices

References

1. GPC experiments

(b)

(d)

Figure S1. Gel Permeation Chromatography (GPC) trace of (a) PBPPV; (c) diPBPPV from refractive index (RI) detector. Molecular weight distribution plots of (b) PBPPV; (d) diPBPPV.

2. Thermal stability

Figure S2. TGA plot of PBPPVs with a heating rate of 40 °C min⁻¹ under nitrogen atmosphere.

3. Electrochemical properties

Figure S3. Cyclic voltammogram profile of PBPPVs. (0.1 M Bu_4NPF_6/CH_2Cl_2 with ferrocene

at v = 0.05 V/s.)

4. NMR experiments

(c)

Figure S4. ¹H NMR spectra of (a) BPPV-2Br, (b) PBPPV, (c) diBPPV-2Br, (d) diPBPPV.

5. Device fabrication

Figure S5. Diagram and photo of OFET devices.

9

6. Device performances on other conditions

Figure S6. Transfer (top) and output (bottom) curves of TG/BC OFET devices based diPBPPV thin film (annealed at 150 °C). Device parameters: channel width/length (W/L) = 10, $C_i = 3.9 \text{ nF} \text{ cm}^{-2}$.

Figure S7. Transfer (top) and output (bottom) curves of TG/BC OFET devices based diPBPPV thin film (annealed at 200 °C). Device parameters: channel width/length (W/L) = 10, $C_i = 3.9 \text{ nF}$ cm⁻².

Figure S8. Transfer (top) and output (bottom) curves of TG/BC OFET devices based diPBPPV thin film (annealed at 280 °C). Device parameters: channel width/length (W/L) = 10, $C_i = 3.9 \text{ nF} \text{ cm}^{-2}$.

Polymer	Energy level	Charge Transfer property			
	HOMO/LUMO/band gap (eV)		$\begin{array}{c} \mu_{h}(cm^{2} \\ V^{\text{-1}}s^{\text{-1}}) \end{array}$	Device structure	Refs.
+ PPV n	-5.2/-2.7/2.5	-	5.0×10 ⁻ 7	SCLC	1
+ PPV n	-5.2/-2.7/2.5	10-4	-	BG-TC, Ca/Ca	2
	-5.0/-2.8/2.2	3.0×10 ⁻³	6.0×10- 4	Top contact,	3
				Au/Ca	
→ → MEH-PPV	-5.0/-2.8/2.2	-	10-4	Bottom contact,	4
				Au-on-Cr/Au- on-Al	
$\underset{RO}{\overset{OR}{\underset{\text{Super yellow}}{\longrightarrow}}} \overset{OR}{\underset{\text{Super yellow}}{\longrightarrow}} \overset{OR}{\underset$	-4.8/-2.4/2.4	6.0×10 ⁻⁵	3.0×10- 4	Top contact, Ag/Ca	5
$\overbrace{C_{11}H_{22}O}^{OC_{11}H_{23}} \overbrace{C_{10}H_{27}O}^{OC_{10}H_{27}} \overbrace{m}^{M_{27}}$	-	-	1.0×10- 2	BG-BC, Au/Au	6
$\overbrace{C_{ij}H_{13}O}^{C_{ij}H_{13}} \xrightarrow{OC_{ij}H_{13}} \xrightarrow{OC_{ij}H_{13}} \xrightarrow{OC_{ij}H_{13}} \underset{C_{ij}H_{13}O}{} \xrightarrow{OC_{ij}H_{13}} \underset{Ch.PPV}{} \xrightarrow{OC_{ij}H_{13}}$	-5.4/-3.2/2.2	4.0×10 ⁻⁵	-	BG-TC, Ca/Ca	2, 7
$(\mathcal{A}_{\mathcal{A}}^{R}) \xrightarrow{\mathcal{A}_{\mathcal{A}}}_{BDPPV} (\mathcal{A}_{\mathcal{A}}^{C}) \xrightarrow{\mathcal{A}_{\mathcal{A}}}_{R} (\mathcal{A}_{\mathcal{A}}^{C}) \xrightarrow{\mathcal{A}_{\mathcal{A}}^{C}}_{R} (\mathcal{A}_{\mathcal{A}}^{C}) \xrightarrow{\mathcal{A}} (\mathcal{A}^{C}) (\mathcal{A}_{\mathcal{A}}^{C}) (\mathcal{A}_{$	-5.83/-4.41/1.42	0.84	-	TG-BC, Au/Au, on SiO ₂	8
$ + \left(+ \right)^{R} + \left(+ \right)^{O} + \left(+ \right)^{O}$	-6.19/-4.26/1.46	1.39	-	TG-BC, Au/Au, on SiO ₂	0
$(\mathcal{F}_{F}^{R}) \xrightarrow{C}_{F} (\mathcal{F}_{F}^{C}) \xrightarrow{C}_{F} (\mathcal{F}_{F}^{C}) \xrightarrow{F}_{F} (\mathcal{F}_{F}^{C}) \xrightarrow{F} (\mathcal$	-6.22/-4.30/1.39	0.62	-	TG-BC, Au/Au, on SiO ₂	7
$ \begin{array}{c} & & \\ & & $	-5.99/-4.49/1.50	0.16	-	TG-BC, Au/Au, on SiO ₂	10

7. Table S1 A summary of charge carrier mobility for PPV-based conjugated polymers reported so far

8. Stability test for PBPPV-based devices

Figure S9. Stability test within one week for diPBPPV-based devices (device stored in air, humidity less than 30%, device parameters: channel width/length (W/L) = 10, $C_i = 6.8 \text{ nF cm}^{-2}$, annealed at 280 °C)

References

1 Blom, P. W. M., Jong, M. J. M. d. and Vleggaar, J. J. M., Appl. Phys. Lett., 1996, 68, 3308.

2 Chua, L.-L., Zaumseil, J., Chang, J.-F., Ou, E. C. W., Ho, P. K. H., Sirringhaus, H. and Friend, R. H., *Nature*, 2005, **434**, 194.

3 Zaumseil, J., Friend, R. H. and Sirringhaus, H., Nat. Mater., 2006, 5, 69.

4 Sakanoue, T., Fujiwara, E., Yamada, R. and Tada, H., Appl. Phys. Lett., 2004, 84, 3037.

5 Swensen, J. S., Soci, C. and Heeger, A. J., Appl. Phys. Lett., 2005, 87, 253511.

6 van Breemen, A., Herwig, P. T., Chlon, C. H. T., Sweelssen, J., Schoo, H. F. M., Benito, E. M., de Leeuw, D. M., Tanase, C., Wildeman, J. and Blom, P. W. M., *Adv. Funct. Mater.*, 2005, **15**, 872.

7 Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. *Nature* 1993, **365**, 628.

8 Lei, T., Dou, J.-H., Cao, X.-Y., Wang, J.-Y. and Pei, J., J. Am. Chem. Soc., 2013, 135, 12168.

9 Lei, T., Xia, X., Wang, J.-Y., Liu, C.-J. and Pei, J., J. Am. Chem. Soc., 2014, 136, 2135.

10 Lu, Y., Yu, Z.-D., Zhang, R.-Z., Yao, Z.-F., You, H.-Y., Jiang, L., Un, H.-I., Dong, B.-W., Xiong, M., Wang, J.-Y. and Pei, J., *Angew. Chem. Int. Ed.*, 2019, **58**, 11390.