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I. Derivation of Electrical Behavior of Elastic Thin Film Transistors with Deformation 

To examine the changes in the electrical characteristics of thin film transistors (TFTs) upon 

mechanical deformation, we use the extension ratio, 𝜆.		The	extension	ratio	is defined as the ratio 

of the deformed dimension (xi) to the initial dimension (xi,0) in a particular direction, 𝜆i=xi/xi,0. 
This metric is preferable to strain for the description of large deformations of polymers. For most 

amorphous polymers Poisson’s ratio is essentially equal to 0.5 and the product of the extension 

ratios is unity, i.e. 𝜆1𝜆2𝜆3=1, because the material is incompressible.    

 

We present here the full derivation for uniaxial deformation along the channel length of an elastic 

TFT where all of the materials, semiconductor, dielectric, and electrodes, are deformed to the same 

extent and behave elastically. The following derivation follows the conventional model for 

polymer elasticity at small deformation, i.e. 𝜆 < ~2.1  For a TFT, we define the extension ratios 

along the channel width (W), length (L) and dielectric thickness (t) such that: 

 

𝜆W𝜆L𝜆t=1                 (1) 

 

The TFT as a whole is deformed by 𝜆L	by	a	force	along	the	channel	direction.  The other directions 

are unconstrained because no force is applied and their extension ratios are equivalent. 

 

              (2) 

 

This results in a simple relationship between the extension ratios given by Eq. 3 and 4. 

λW = λt
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           (3) 

      (4) 

 

These relationships can be used to derive the change in the gate capacitance per area CG (F/cm2) 

with deformation given by Eq. 5 and 6 where 𝜀0 is the vacuum permittivity, 𝜀r is the dielectric 

constant of the gate dielectric, and t is the thickness of the gate dielectric. 

              (5) 

            (6) 

 

The change in W/L of the TFT under uniaxial deformation is given by  

       (7) 

 

We assume that the total amount of trapped charge in the semiconductor is the origin of the 

threshold voltage VT and is constant, qtrap= VTCG.  This results in the following expressions: 

 

         (8) 

        (9) 

 

With all of the geometric dependences in hand from Eq. 6, 7, and 9, we can substitute into the 

gradual channel model for the current-voltage behavior of TFTs to obtain the behavior in the linear 

and the saturation regimes as a function of uniaxial deformation resulting in Eq. 10 & 11 

respectively. 
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 (10) 

 

 (11) 

 

The forms for uniaxial deformation along the channel width, W, and biaxial deformation along W 
and L can be derived similarly. 
 
 
II. Derivation of Stability Criterion for Complementary Inverters with TFTs 
 

 
Figure S1. a) Load curves of the n- (solid) and p-type (dashed) TFTs over varying input voltages 
(Vin = 0, 15, 20, 25, and 40 V). b) The voltage transfer curve is created by finding the crossover 
points of the n- and p-type load curves for a sweep of input voltages.  
 
The value of the inverting voltage, Vinv, for a complementary inverter where both the p- and n- 
type transistors are in the saturation regime is given by the standard expression in Eq. 12.2  The 
device parameters of the two TFTs are given by Eq. 13. 
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 (12) 
 

  (13) 
 
 
For uniaxial deformation of an inverter with both TFTs oriented in the same direction, Vinv is 
given by Eq. 14.  Here the value of VT with deformation is assumed to be given by Eq. 9. 
 
 

 (14) 
 
The condition for stability of Vinv with deformation can be found by determining when: 
 

    (15) 
 

The resulting stability criterion is given by Eq. 16 that sets the design parameters for the two 
TFTs. 

 
 

 (16) 
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Figure 2 TFT inverter characteristics for a Case I (parallel layout) device deformed uniaxially 
along L with a) matched n- and p-type TFT specifications, satisfying the above defined stability 
criterion, and b) mis-matched n- and p-type TFT specifications (with the p-type TFT having 
double the mobility of the n-type). Note that the mis-matched device (not satisfying the stability 
criterion) suffers from drift in VT with deformation. 
 
If the TFTs are laid out into a circuit such that the p-type device is deformed along L and the n-
type device is deformed by the same amount along W given by 𝜆, then the resulting expression 
for Vinv is given by: 
 
 
 

(17) 

 

The derivative of this function has terms with varying powers of 𝜆 and a solution to satisfy Eq. 15 

that is independent of extension is not possible. 
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III. Inverter with Organic Electrochemical Transistors (OECTs). 

In the case of organic electrochemical transistors, we assume that VT is not dependent on 

deformation, unlike the TFT case.  Here the only term in Eq. 12 that will vary with deformation is 

the ratio of device parameters given in Eq. 13.  For a circuit with OECTs laid out with their 

channels in the same direction (Case I in the main text), Vinv is always stable to deformation 

because both devices deform in the same way.   

 

In the case that they are laid out in different directions (Case II in main text), Vinv can be given by 

the following: 

 

 
 

The condition for stability given by Eq. 15 is given by: 

 

 
 

This condition limits the value of VDD, which in turn affects the possible gain of the inverter but 

does lead to stable digital inverting operation. 
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