Supporting Information

From BiI₃ to CuBiI₄: a Striking Improvement in Photoelectric Performance as a Novel Photodetector Candidate

Nannan Qu,^{#, a, b} Yan Lei,^{*, #, a} Xiaogang Yang,^a Xiaojing Hu,^a Wencai Zhao,^a Chaoliang Zhao,^a Zhi Zheng^{*, a, c}

^a Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, P. R. China.

^b College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

^c Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 461000, Henan, P. R. China.

[#] These authors contribute to this work equally.

*Corresponding author: Yan Lei (Email: leiyan@xcu.edu.cn); Zhi Zheng (Email: zzheng@xcu.edu.cn)

Figure S1. (a) XRD pattern of the thin films with 1.2 : 1 started Cu and Bi molar ratio;(b) XRD patterns of the precipitate that separated from the precursor solution with 1.2 : 1 started Cu and Bi molar ratio.

Figure S2. I-V curves of the photodetectors under on-off light illumination (100 mW/cm²) with -3 V to 3 V bias voltage.

Figure S3. I-t curves of the photodetectors under on-off light illumination (100 mW/cm^2) with 3 V bias voltage.