High color rendering index white light-emitting diode based on enviromental friendly carbon and AIZS nanoparticles

Yanyi Huang,^a Hao Lin,^a Jing Qiu,^{*a} Zhongtao Luo^b, Zhiqiang Yao^b, Libo Liu,^a Huanbin Liu,^a Xiaosheng Tang^{*a} and Xiaoxiao Fu^c

^{*a*} Key Laboratory of Optoelectronic Technology & System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

^b State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

^c College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.

*Email - jingqiu@cqu.edu.cn and xstang@cqu.edu.cn

Figure S1. High-resolution XPS pattern of AIZS.

Figure S2. High-resolution XPS pattern of B-CDs.

Figure S3. High-resolution XPS pattern of G-CDs

Figure S4. PL emission spectra of the G-CDs under different excitation wavelengths.

Figure S5. Energy dispersive X-ray (EDX) of CDs@SiO₂.

Figure S6.elemental mappings of CDs