Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for

Devising Novel Methods for the Controlled Synthesis

with Morphology and Size Control of Scintillator Materials

Nathaniel Hurley,¹ Federico Moretti,² Hanfei Yan,³ Edith Bourret-Courchesne,²

Yong S. Chu,³ and Stanislaus S. Wong^{1,*}

Email: stanislaus.wong@stonybrook.edu; sswong@bnl.gov

¹Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

³National Synchrotron Light Source II, Building 743, Brookhaven National Laboratory, Upton, NY 11973

*To whom correspondence should be addressed.

Justification for Study

To highlight the necessity of our study, it is worth pointing out that previously reported synthesis methods used to make these scintillator materials are relatively limited in scope. These include (i) a vertical Bridgman-Stockbarger technique, (ii) slow evaporation, and (iii) the Czochralski method.¹ The Bridgman-Stockbarger protocol is a high temperature procedure, involving heating of precursors within a vacuum-sealed quartz ampoule for an extended period of time in an oven with designated 'temperature controlled' zones.² This method works well for generating either 'millimeter-scale' or larger single crystals from 'high purity' powder precursors. However, this is a relatively energy-intensive method that not only necessitates both specialized equipment and high temperatures (i.e., 300°C or higher) but also takes 24 hours or more to complete, based upon the sample size and the rate at which the ampoule is lowered. It is noteworthy that the precursors used must be of a very high purity, considering that there is no way to properly wash out impurities, even after the desired crystals have been formed.³

Another reported synthesis method is associated with 'slow evaporation'. This technique involves dissolution of the precursor salts in either water or other solvents, and growing of the crystals by slowly evaporating off the solvent.^{4, 5} This technique requires no special equipment, but it can take either days or weeks to grow the crystals. Moreover, a time-consuming purification of crystal precursors must also be performed, since even minor impurities can either inhibit the growth of or contaminate the final crystal formed.⁶

The final commonly used procedure involves a Czochralski methodology. This procedure starts off with a single crystal seed placed within a melt of the crystal, and, using mechanical means, it is pulled slowly upward. As the crystals are 'raised', a single crystal is formed. This

protocol requires very high temperatures, typically over 1000°C, and takes a relatively long time to occur, since crystals must be grown very slowly or they will not form properly.¹

References

- 1. M. J. Weber, *Journal of Luminescence*, 2002, **100**, 35-45.
- K. Sugawara, M. Koshimizu, T. Yanagida, Y. Fujimoto, R. Haruki, F. Nishikido, S. Kishimoto, and K. Asai, *Optical Materials*, 2015, 41, 53-57.
- A. G. Ostrogorsky, V. Riabov and N. Dropka, *Journal of Crystal Growth*, 2018, 498, 269-276.
- 4. Ae Ran Lim, Oc Hee Han, and S.-Y. Jeong, *Journal of Physics and Chemistry*, 2003, **64**, 933-937.
- 5. A. R. Lim, *Journal of Applied Physics*, 2010, **107**, 1-6.
- M. Senthil Pandian, K. Boopathi, P. Ramasamy, and G. Bhagavannarayana, *Materials Research Bulletin*, 2012, 47, 826-835.
- 7. J. A. McGinnety, *Inorganic Chemistry*, 1974, **13**, 1057-1061.
- R. Puget, M. Jannin, R. Perret, L. Godefroy, and G. Godefroy, *Ferroelectrics*, 1990, 107,
 5.

Figure S1. Indexed peaks (*hkl*) of (A) Cs₂ZnBr₄ and (B) Cs₂ZnCl₄.

Figure S2. Hot Injection Method. *Effect of surfactant*. XRD patterns of OA-free (blue) and OLA-free (red) samples, shown along with the standard diffraction pattern of Cs_2ZnCl_4 (black).⁷

Figure S3. Effect of Varying Surfactant Quantities. Reducing oleylamine levels to (A) 150 μ L and (B) 350 μ L. Increasing the amount of oleylamine to (C) 6 mL.

Figure S4. Effect of reaction time on Cs_2ZnCl_4 . Samples, heated to 100°C, were prepared at the (A) 5 second and (B) 60 minute mark, respectively. Analogous samples, heated to 150°C, were generated at the (C) 5 second and (D) 60 minute interval, while the ones, heated to 200°C, were produced after (E) 5 seconds and (F) 60 minutes, respectively.

Figure S5. Effect of reaction time on Cs_2ZnBr_4 . Samples, heated to 100°C, were prepared at the (A) 5 second and (B) 60 minute mark, respectively. Analogous samples, heated to 150°C, were generated at the (C) 5 second and (D) 60 minute interval, while the ones, heated to 200°C, were produced after (E) 5 seconds and (F) 60 minutes, respectively. Finally, samples heated to 200°C are presented after (G) 5 seconds and (H) 60 minutes, respectively

Figure S6. LARP method. XRD patterns of Cs_2ZnCl_4 corresponding to spindles (blue) and particles (red), along with the published database standard (black).⁷

Figure S7. LARP Method. XRD patterns of Cs_2ZnBr_4 plates (green) and the published database standard (black).⁸

Figure S8. XRD pattern of bulk Cs₂ZnCl₄ that had been created by slow evaporation.

Figure S9. 2D photoluminescence maps and selected excitation and emission spectra of (A and C, respectively) Cs_2ZnCl_4 and of (B and D) Cs_2ZnBr_4 .

Figure S10. Images of Cs_2ZnCl_4 (left vial) and Cs_2ZnBr_4 (right vial) in neon light (right-hand set of images) and under 254 nm Hg light excitation (left-hand set of images).

'Basic'	Structure	'Acidic'	Structure
Surfactant		Surfactant	
Oleylamine	NH ₂	Oleic Acid	
(OLA)		(OA)	ОН
	/		
Octadecylamine	NH ₂	Stearic acid	, A A A A A A A A A A A A A A A A A A A
(ODA)		(SA)	
Hexadecylamine	NH ₂	Palmitic acid	
(HDA)		(PA)	> > > > > > > > > > > > > > > > > > >
Dodecylamine	NH2	Lauric acid	° I
(DDA)		(LA)	ОН
Nonylamine	NH ₂	Nonanoic	o II
(NLA)		acid (NA)	

Table S1. Surfactants, abbreviations, and associated chemical structures (made in Chemdraw).

Material	Acid	Base Surfactant	Results	Image
Cs ₂ ZnCl ₄	Oleic Acid (18 carbons)	Oleylamine (18 carbons)	$\begin{tabular}{ c c c c c c } \hline Nanorods \\ Length: \\ 124.6 nm \pm 26.8 \\ nm (21\% \ error); \\ Width: \\ 25.1 nm \pm 3.5 nm \\ (14\% \ error). \\ \hline Taken from above \\ table for \end{tabular}$	
Cs ₂ ZnCl ₄	Lauric acid (12 carbons)	Oleylamine (18 carbons)	comparison A mixture of rods and particles	100 mm
Cs ₂ ZnCl ₄	Palmitic acid (14 carbons)	Oleylamine (18 carbons)	Length: 94.3 ± 50.1 nm (53% error) Width: 26.6 ± 4.7 nm (18% error)	200 nm

Cs ₂ ZnCl ₄	Stearic acid (18 carbons)	Oleylamine (18 carbons)	Length: 175.9 ± 54.7 nm (31% error) Width: 25.7 ± 4.0 nm (16% error)	200 nm
Cs ₂ ZnCl ₄	Oleic acid (18 carbons)	Dodecylamine (12 carbons)	Mixture of rods and particles	200 pm
Cs ₂ ZnCl ₄	Oleic acid (18 carbons)	Hexadecylamine (16 carbons)	$\frac{\text{Nanorods}}{\text{Lengths:}}$ 86.9 ± 19.2 nm (error: 22%) Width: 21.5 ± 3.7 nm (error: 17%)	200 nm
Cs ₂ ZnCl ₄	Oleic acid (18 carbons)	Octadecylamine (18 carbons)	$\frac{\text{Nanorods}}{\text{Length:}}$ 149.6 ± 17.3 nm (error: 12%) Width: 19.0 ± 4.6 nm (error: 24%)	<u>о.2 µm</u>

Cs ₂ ZnCl ₄	Oleic acid	Oleylamine	Nanorods	
(changed	(18 carbons)	(18 carbons)	Length: $95.8 \pm$	
solvent)			25.3 nm (26%	
			error);	No.
			Width: 18.1 ± 2.5	A second second
			nm (13% error)	A Stranger &
			Used tetradecane	
			as solvent.	
				<u>100 nm</u>
Cs ₂ ZnCl ₄	Oleic acid	Nonylamine	Short nanorods	2 Marine
(changed	(18 carbons)	(9 carbons)	Length:	State AS
solvent)			$78.3 \pm 15.4 \text{ nm}$	
, í			(20% error)	
			Width:	
			$34.4 \pm 8.3 \text{ nm}$	
			(24% error)	
			Used tetradecane	
			as solvent.	
				200 nm

Table S2. Cs₂ZnCl₄. Effect of changing the identity of acid and amine surfactants by reducing nonpolar tail length from the 18-carbon oleic acid and oleylamine. Reaction time was kept at 20 minutes, and the corresponding reaction temperature was held at 150°C. These conditions were chosen, as they yielded the most reproducible morphology from previous trials.

Material	Acid	Base	Results	Image
Cs ₂ ZnCl ₄	Oleic acid: 0.4 ml	Oleylamine: 0.4 ml Reduced surfactant amount by 5x.	Length: 89.6 ± 19.5 nm (21% error) Width: 21.4 ± 3.0 nm (14% error)	100 nm
Cs ₂ ZnCl ₄	Oleic acid: 4.0 ml	Oleylamine: 0.0 ml	Micron sized textured spheres Diameter: 21.2 ± 4.9 μm	
Cs ₂ ZnCl ₄	Oleic acid: 0.0 ml	Oleylamine: 4.0 ml	No morphology control	
Cs ₂ ZnCl ₄ 3x scale up	Oleic acid: 6.0 ml	Oleylamine: 6.0 ml	<u>Rods</u> Length: 183.70 nm ± 26.38 (14% error) Width: 13.16 nm ± 4.41 nm (33% error)	

Cs ₂ ZnCl ₄	Oleic acid: 2.0 ml	Oleylamine: 30 μL	Irregularly-shaped particles	
Cs ₂ ZnCl ₄	Oleic acid: 2.0 ml	Oleylamine: 150 μL	<u>Cubes</u> Size: 24.45 nm ± 4.11 nm (17% error)	
Cs ₂ ZnCl ₄	Oleic acid: 2.0 ml	Oleylamine: 250 µL	Irregular particles	

Cs ₂ ZnCl ₄	Oleic acid: 2.0 ml	Oleylamine: 350 μL	Mixture of cubes and rods Size: 27.40 ± 6.18 nm (23% error)	
Cs ₂ ZnCl ₄	Oleic acid: 12.0 ml	Oleylamine: 12.0 ml	Micron-sized rods, cubes, and particles	
			No morphology control	
			No octadecene used as solvent	X 8,500 5.0KV SEI SEX 100 4.2mm 11:26:22

Table S3. Cs₂ZnCl₄. All trials are highlighted, wherein the amounts of oleic acid and oleylamine ratios were changed. Reaction time and temperature were kept at 20 minutes and 150°C. The total volume was kept constant by either adding in or removing octadecene.

Material	Reaction Temperature	Reaction Time	Results	Image
Cs ₂ ZnCl ₄	50°C	20 minutes	<u>Nanospheres</u> Size: 93.3 ± 9.9 nm (10% error) Best morphology of the 50°C trials	
Cs ₂ ZnCl ₄	100°C	5 seconds	Irregularly-shaped particles Size: 38.9 ± 14.3 nm (37% error)	100 nm
Cs ₂ ZnCl ₄	100°C	20 minutes	More regularly-shaped particles Size: 36.3 ± 10.9 nm (29% error) Best morphology of the 100°C trials	100 nm

Cs ₂ ZnCl ₄	100°C	60 minutes	Particles become less uniform at longer reaction times. Size: 54.9 ± 27.2 nm (50% error)	50 mm
Cs ₂ ZnCl ₄	150°C	5 seconds	Irregularly-shaped particles and significant particle aggregation	100 nm
Cs ₂ ZnCl ₄	150°C	20 minutes	Nanorods Length: 124.6 nm ± 26.8 nm (21% error); Width: 25.1 nm ± 3.5 nm (14% error). Best morphology of the 150°C trials	
Cs ₂ ZnCl ₄	150°C	60 minutes	Little change from the 20 minute sample. Some more aggregation and particle formation	50 nm

Cs ₂ ZnCl ₄	200°C	5 seconds	Irregular particles suspended in a film.	50 nm
Cs ₂ ZnCl ₄	200°C	20 minutes	$\frac{\text{Nanorods}}{\text{Length: } 239.6 \pm 101.7}$ $\text{nm (} 42\% \text{ error)}$ Width: 25.7 ± 4.6 nm (18% error) Larger overall rods than with the 150°C samples, but with larger size variation	100 nm
Cs ₂ ZnCl ₄	200°C	60 minutes	Large irregularly- shaped particles. Rod morphology was completely degraded.	0,5 µт

Table S4. Cs₂ZnCl₄. The effects upon morphology of changing reaction time with samples tested at 5 seconds, 20 minutes, and 60 minutes, respectively. Effects of reaction time upon morphology were probed at different reaction temperatures, systematically ranging from 50°C to 200°C in increments of 50°C. Amounts of oleic acid, oleylamine, cesium-oleate, zinc chloride, and octadecene were kept constant throughout all of the trials.

Material	Reaction Temperature	Reaction Time	Results	Image
Cs ₂ ZnBr ₄	50°C	5 seconds	Irregular particles Size: 34.85 ± 8.75 nm (25% error)	100 mm
Cs ₂ ZnBr ₄	50°C	20 minutes	Irregular particles Size: 26.34 ± 5.38 nm (20% error)	50 nm
Cs ₂ ZnBr ₄	50°C	60 minutes	Irregular particles Size: 34.18 ± 9.92 nm (29% error)	100 nm
Cs ₂ ZnBr ₄	100°C	5 seconds	Irregular particles Size: 23.30 ± 7.56 nm (32% error)	100 nm

Cs ₂ ZnBr ₄	100°C	20 minutes	Cubes with rounded corners Size: 43.88 ± 10.36 nm (24% error) Thickness: 4.63 ± .90 nm (19% error)	50 nm
Cs ₂ ZnBr ₄	100°C	60 minutes	Cubes Size: 46.06 ± 12.27 nm (27% error) Thickness: 4.31 ± .51 nm (12% error)	50 nm
Cs ₂ ZnBr ₄	150°C	5 seconds	Cubes Size: 36.05 ± 11.36 nm (31% error) Thickness: 4.29 ± 0.84 nm (20% error)	100 mm
Cs ₂ ZnBr ₄	150°C	20 minutes	Rods Length: 206.88 ± 50.17 nm (24% error) Width: 26.66 ± 12.59 nm (47% error) Thickness: 6.87 ± 1.17 nm (17% error)	100 mm

Cs ₂ ZnBr ₄	150°C	60 minutes	Rods Length: 217.02 ± 56.20 nm (26% error) Width: 30.38 ± 9.32 nm (31% error) Thickness: 6.38 ± 1.34 nm (21% error)	
Cs ₂ ZnBr ₄	200°C	5 seconds	Rods Length: 118.35 ± 32.66 nm (28% error) Width: 22.11 ± 4.27 nm (19% error) Thickness: 7.56 ± 1.12 nm (15% error)	TUU AM
Cs ₂ ZnBr ₄	200°C	20 minutes	Longer rods Length: 642.16 ± 334.40 nm (52% error) Width: 40.72 ± 29.11 nm (71% error)	100 nm
Cs ₂ ZnBr ₄	200°C	60 minutes	Micron sized rods Length: $2.57 \pm .37 \mu m$ (14% error) Width: 0.32 ± 0.09 μm (28% error)	0.5 µm

 Table S5. Cs2ZnBr4. The effects upon morphology of changing reaction time with samples tested at 5 seconds, 20 minutes, and 60 minutes, respectively. Effects of reaction time upon morphology were probed at different reaction temperatures, systematically ranging from 50°C

to 200°C in increments of 50°C. Amounts of oleic acid, oleylamine, cesium-oleate, zinc chloride, and octadecene were kept constant throughout all of the trials.

Sample	Surfactants	'Good'	'Poor' solvent	Results
		solvent		
1. Cs_2ZnI_4	None	Triethylene	2-ethylhexanol	CsI precipitated
		glycol	-	
2. Cs_2ZnI_4	None	DMF	2-ethylhexanol	CsI precipitated
3. Cs_2ZnI_4	None	Triethylene	Toluene	No precipitation
		glycol		
4. Cs_2ZnI_4	None	DMF	Toluene	CsI precipitated
5. Cs_2ZnI_4	Oleic acid	Triethylene	Isopropanol	No precipitation
		glycol		
		DMF		

Table S6. All trials associated with the LARP method, run for Cs_2ZnI_4 . These were organizedby the choice of the poor solvent.

Sample	Surfactants	'Good'	'Poor'	Results
		solvent	solvent	
1. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	1.045 ± 0.321 microns;
		glycol,		Irregularly-shaped
		water,		particles
2. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	0.498 ± 0.152 microns;
		glycol,		Irregularly-shaped
		DMF		particles
3. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	1.611 ± 0.951 microns,
	(0.2x the)	glycol,		irregularly-shaped
	volume)	water		particles
4. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	Large plates:
	(2x the	glycol,		4.535 ± 1.067 microns
	volume)	water		(long edge)
				2.881 ± 0.577 microns
				(short edge)
				0.298 ± 0.061 microns
5 0 7 01	01 1	T : 1 1	T 1	(width)
5. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	1.011 ± 0.310 microns,
	(0.058 ml)	glycol	T 1	lumpy, oblong structures
6. Cs_2ZnCl_4	Oleic acid	Triethylene	Isopropanol	2.760 ± 0.284 microns,
7 0 7 01	(0.116 ml)	glycol	т 1	uniform spindles
$/. Cs_2 ZnCl_4$	(0.222 ml)	Irietnylene	Isopropanol	1.580 ± 0.162 microns,
0 C 7 C1	(0.232 ml)	glycol		
8. Cs_2ZnCl_4	Oleic acid	I rietnylene	Isopropanol	0.684 ± 0.169 microns,
		giycoi		less uniform smaller
$0 C_2 Z_2 C_1$	Olaia aaid	othulono	Iconronanal	0.801 ± 0.248 microng
9. Cs_2ZnCl_4	Oleic acid	ethylene	Isopropanoi	0.801 ± 0.348 microns,
		glycol,		nitegulariy-shaped
$10 C_{\alpha} Z_{\mu} C_{\alpha}$	Olaia aaid	Propulana	Iconronanal	0.825 ± 0.321 microng
10. CS_2ZIICI_4	Oleic aciu	riopytette	Isopropation	0.855 ± 0.551 inicions,
		DME		nartialas
$11 C_0 7_0 C_1$	Nono	DNIF	Isopropanol	0.053 ± 0.223 microns
$11. CS_2ZIICI_4$	INDITE	alvool	Isopropation	0.933 ± 0.223 microins,
		grycor		Lumpy, oblong structures
$12 Cs_2 7nCL$	Linoleic acid	DMF	Isopropanol	Irregularly-shaped
				particles
$13 Cs_2 7nCL$	Myristic acid	DMF	Isopropanol	Irregularly-shaned
		21111		particles
$14. Cs_2ZnCl_4$	Oleic acid	DMF	Isopropanol	Irregularly-shaped
				particles
$15. Cs_2ZnCl_4$	Palmitic acid	DMF	Isopropanol	Irregularly-shaped
				particles
15. Cs_2ZnCl_4	Palmitic acid	DMF	Isopropanol	Irregularly-shaped particles

16. Cs_2ZnCl_4	Stearic acid	DMF	Isopropanol	Irregularly-shaped
				particles
17. Cs_2ZnCl_4	None	Triethylene	DCM	Irregularly-shaped
		glycol		particles
18. Cs_2ZnCl_4	Oleic acid	Triethylene	DCM	Irregularly-shaped
	(0.116 ml)	glycol		particles
19. Cs_2ZnCl_4	Oleic acid	Triethylene	DCM	Irregularly-shaped
	(1.166 ml)	glycol		particles
20. Cs_2ZnCl_4	None	Triethylene	Butanol	Micron sized irregularly-
		glycol		shaped spindles
21. Cs_2ZnCl_4	None	Triethylene	2-	Irregularly-shaped
		glycol	ethylhexanol	particles
22. Cs_2ZnCl_4	Linoleic acid	DMF	Toluene	Irregularly-shaped
				particles
23. Cs_2ZnCl_4	Myristic acid	DMF	Toluene	Irregularly-shaped
				particles

Table S7. All trials associated with the LARP method, run for Cs₂ZnCl₄ organized by the choice of poor solvent.

Sample	Surfactants	'Good'	'Poor'	Results
		solvent	solvent	
1. Cs_2ZnBr_4	None	Triethylene	Isopropanol	Large irregularly-shaped
		glycol		plates
$2. Cs_2 ZnBr_4$	Oleic acid	water	Isopropanol	Only CsBr precipitated
3. Cs_2ZnBr_4	Oleic acid	Triethylene	Isopropanol	Large irregularly-shaped
	(0.116 ml)	glycol		plates
4. Cs_2ZnBr_4	Oleic acid	Triethylene	Isopropanol	Large irregularly-shaped
	(1.166 ml)	glycol		plates
5. Cs_2ZnBr_4	Oleic acid	DMF	Octanol	Large irregularly-shaped CsBr crystals
6. Cs_2ZnBr_4	Oleic acid	DMF	Chloroform	355 ± 154 nm, irregularly- shaped rounded particles
7. Cs_2ZnBr_4	Oleic acid	Ethylene	Chloroform	1.211 ± 0.438 microns,
		glycol,		irregularly-shaped
		DMF		particles
8. Cs ₂ ZnBr ₄	Oleic acid	Ethylene	DCM	1.211 ± 0.438 microns,
		glycol,		irregularly-shaped
		DMF		particles
9. Cs_2ZnBr_4	None	Triethylene	DCM	Irregularly-shaped
		glycol		particles
10. Cs_2ZnBr_4	Oleic acid	Triethylene	DCM	Irregularly-shaped
	(0.116 ml)	glycol		particles
11. Cs_2ZnBr_4	Oleic acid	Triethylene	DCM	Irregularly-shaped
	(1.166 ml)	glycol		particles
12. Cs_2ZnBr_4	Oleic acid	Triethylene	Toluene	764 ± 207 nm,
		glycol,		rectangular plates
12 Cz ZuDu	01.5		T - 1	0.067 + 0.202 mismons
13. Cs_2ZnBr_4	Oleic acid	Ethylene	Ioluene	0.967 ± 0.393 microns,
		DME		narticles
$14 C_{\rm G} 7n {\rm Pr}$	СТАР		Toluono	Irrogularly shaped
14. CS ₂ ZIIDI4	CIAD	Divit	Toluelle	narticles
$15 \text{ Cs}_2\text{ZnBr}_4$	Linoleic acid	DMF	Toluene	Irregularly-shaped
10: 00200014				particles
16. Cs_2ZnBr_4	Myristic acid	DMF	Toluene	Irregularly-shaped
<u>2</u> -				particles
$17. Cs_2ZnBr_4$	Palmitic acid	DMF	Toluene	Irregularly-shaped
				particles
18. Cs_2ZnBr_4	Stearic acid	DMF	Toluene	Irregularly-shaped
				particles
19. Cs_2ZnBr_4	None	Triethylene	2-	Irregularly-shaped
		glycol	ethylhexanol	particles

Table S8. All trials associated with the LARP method, run for Cs_2ZnBr_4 organized by the choice of the poor solvent.

References

- 1. M. J. Weber, *Journal of Luminescence*, 2002, **100**, 35-45.
- K. Sugawara, M. Koshimizu, T. Yanagida, Y. Fujimoto, R. Haruki, F. Nishikido, S. Kishimoto, and K. Asai, *Optical Materials*, 2015, 41, 53-57.
- 3. A. G. Ostrogorsky, V. Riabov and N. Dropka, *Journal of Crystal Growth*, 2018, **498**, 269-276.
- 4. A. R. Lim, O. H. Han, and S.-Y. Jeong, *Journal of Physics and Chemistry*, 2003, **64**, 933-937.
- 5. A. R. Lim, *Journal of Applied Physics*, 2010, **107**, 1-6.
- M. Senthil Pandian, K. Boopathi, P. Ramasamy, and G. Bhagavannarayana, *Materials Research Bulletin*, 2012, 47, 826-835.
- 7. J. A. McGinnety, *Inorganic Chemistry*, 1974, **13**, 1057-1061.
- R. Puget, M. Jannin, R. Perret, L. Godefroy, and G. Godefroy, *Ferroelectrics*, 1990, 107,
 5.