Supporting Information

Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding

Zongxu Liu, [†] Wenyan Wang, [†] Jiaojun Tan, [‡] Jin Liu, [†] Meifang Zhu, [§] Baolei Zhu, [†]* Qiuyu Zhang[†]*

[†]Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China
[‡] College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710071, P. R. China

[§] State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

Calculation of electromagnetic interference shielding test results.

Scattering parameters what contained S_{11} , S_{12} , S_{22} , and S_{21} were output by vector network analyzer directly. Reflection (R), transmission (T) and absorption(A) coefficients could be calculated by following formulations: ^{1,2}

$$R = |S_{11}|^2 = |S_{22}|^2$$
$$T = |S_{12}|^2 = |S_{21}|^2$$
$$R + T + A = 1$$

At the meanwhile, the effective absorbance (Aeff) could be indicated as:

$$A_{eff} = \frac{1 - R - T}{1 - R}$$

The electromagnetic interference shielding effectiveness (EMI SE) consists of reflection (SE_R), absorption (SE_A) and multiple internal reflections shielding effectiveness (SE_M), which could be expressed as: 3,4

$$SE_{R} = 10 \log\left(\frac{1}{1-R}\right) = 10 \log\left(\frac{1}{1-|S_{11}|^{2}}\right)$$
$$SE_{A} = 10 \log\left(\frac{1}{1-A_{eff}}\right) = 10 \log\left(\frac{1-R}{T}\right) = 10 \log\left(\frac{1-|S_{11}|^{2}}{|S_{21}|^{2}}\right)$$
$$SE_{T} = SE_{R} + SE_{A} + SE_{M}$$

Where SE_T is the total shielding effectiveness. SE_M is usually merged in SE_A for multilayer electromagnetic interference shielding materials due to multiple internal reflections is usually absorbed or dissipated in internal of materials.⁵ Hence, SE_T can be written as:

$$SE_T = SE_R + SE_A$$

In order to objectively evaluate the EMI SE of the material. Specific shielding effectiveness (SSE) and thickness specific shielding effectiveness (SSE_t) were used for eliminating the contributions of density and thickness of material to shielding effectiveness.

$$SSE = \frac{EMI SE}{\rho} = dB \ cm^3 \ g^{-1}$$
$$SSE_t = \frac{SSE}{t} = dB \ cm^2 \ g^{-1}$$

Where ρ and t are density in g cm⁻³and thickness in cm of testing sample, respectively. EMI shielding efficiency is calculated according to below equation:⁶

Shielding efficiency (%) =
$$100 - \left(\frac{1}{10^{\frac{SE}{10}}}\right) \times 100$$

Figure S1. The synthetic route of waterborne polyurethane.

Figure S2. Temperature dependence of the tan δ of waterborne polyurethane tested by DMA.

Figure S3. ATR-FTIR spectra of waterborne polyurethane.

Figure S4. SEC testing curve of waterborne polyurethane with tetrahydrofuran as the eluent.

Figure S5. (a) AFM photograph and (b) the relevant height profile of $Ti_3C_2T_x$ MXene nanosheet.

Figure S6. 1D-XRD pattern of Ti₃AlC₂ MAX phase powder.

Figure S7. (a) and (b) are EDS full scale counts charts for elements of pure $Ti_3C_2T_x$ MXene and PU/MX-20 core-shell nanosheets, respectively.

Figure S8. The TGA curves of PU and PU/MX nanocomposite films.

Figure S9. Mechanical properties of PU elastomer. (a) Strain-stress curves of PU elastomer, (b) the statistical results of fracture toughness and Young's modulus.

Figure S10. The SME photographs of cross-section morphology for (a) PU/MX-10, (b) PU/MX-30 and (c) PU/MX-50 films after tensile testing, respectively. The circled area in figure (c) shows polymer linkages among $Ti_3C_2T_x$ nanosheets.

Figure S11. The theoretical total electromagnetic interference shielding effectiveness of PU/MX nanocomposite films calculated from Simon equation.

Figure S12. (a), (b) and (c) are the absorption, reflection and transmission coefficients of PU/MX nanocomposite films, respectively.

Sample name	Weight loss from 100°C to 800°C (wt. %)	Theoretical content of PU (wt. %)	PU content measured by TGA (wt. %)
PU/MX-0	1.86	0	/
PU/MX-10	13.48	10	11.93
PU/MX-20	21.82	20	20.51
PU/MX-30	28.94	30	27.82
PU/MX-50	48.47	50	47.89
PU/MX-70	66.06	70	65.97
PU	99.19	100	/

Table S1. The PU contents of PU/MX nanocomposite films determined by TGA.

The PU contents of PU/MX nanocomposites are calculated by following equation:

$$PU \ content = \frac{M_{PU|MX-X} - M_{Ti_3C_2T_x}}{M_{PU} - M_{Ti_3C_2T_x}} \times 100\%$$

Where $M_{PU/MX-X}$, M_{PU} and $M_{Ti_3C_2T_x}$ are the weight loss of polyurethane/Ti₃C₂T_x nanocomposites, PU and Ti₃C₂T_x MXene film, respectively.

Sample name	d-spacing (Å)	FWHM (°)
PU/MX-0	12.47	0.73
PU/MX-10	12.91	0.92
PU/MX-20	13.71	0.85
PU/MX-30	14.24	0.87
PU/MX-50	14.57	0.90
PU/MX-70	14.62	0.91
MAX Phase	9.38	0.44

Table S2. The detail information of interlayer diffraction spacing (d-spacing) and full width at half maximum (FWHM) for the 002 peak of Ti_3AlC_2 MAX phase and PU/MX nanocomposite films were determined by XRD.

Table S3. The detail mechanical results of PU/MX nanocomposite films and PU.

Sample	Tensile Strength	Strain-to-Failure	Fracture Toughness	Young's
name	(MPa)	(%)	(MJ m ⁻³)	Modulus (GPa)
PU/MX-0	28.92 ± 4.24	3.46 ± 0.65	0.67 ± 0.20	2.53 ± 0.11
PU/MX-10	63.61 ± 1.51	4.05 ± 0.09	1.57 ± 0.04	5.73 ± 0.18
PU/MX-20	96.09 ± 7.69	4.4 ± 0.50	2.66 ± 0.39	7.87 ± 0.76
PU/MX-30	64.75 ± 1.59	4.25 ± 0.11	1.62 ± 0.06	4.42 ± 0.44
PU/MX-50	30.96 ± 1.14	3.8 ± 0.07	0.72 ± 0.04	2.13 ± 0.21
PU/MX-70	21.45 ± 0.55	6.84 ± 0.72	1.13 ± 0.17	1.45 ± 0.13
PU	14.51 ± 0.68	1457.04 ± 49.33	96.21 ± 6.81	0.0125 ± 0.0006

Sample	Density (g cm ⁻³)	Electrical Conductivity (S cm ⁻¹)
PU/MX-0	4.02	5983.5 ± 203.6
PU/MX-10	2.99	4236.7 ± 185.9
PU/MX-20	2.66	2897.4 ± 165.7
PU/MX-30	2.42	1599.6 ± 47.8
PU/MX-50	2.15	598.5 ± 15.0
PU/MX-70	1.63	96.8 ± 2.5

Table S4. The density and electrical conductivity of PU/MX nanocomposite films.

Table S5. The EMI shielding efficiency (%) of PU/MX nanocomposite films.

Sample	EMI Shielding Efficiency (%)
PU/MX-0	99.999 928
PU/MX-10	99.999 795
PU/MX-20	99.998 842
PU/MX-30	99.998 193
PU/MX-50	99.983 693
PU/MX-70	99.857 886

Na	Sample	Filler	Filler	Thickness	SE	SSEt	Def
110.			Content	(cm)	(dB)	(dB cm ² g ⁻¹)	Kel.
1	MXene-SA	Ti ₃ C ₂ T _x	90 wt %	0.0008	57	30830	5
2	Ti ₃ C ₂ T _x /CNF	Ti ₃ C ₂ T _x	90 wt %	0.0047	24	2647	7
3	Ti ₃ C ₂ T _x /PEDOT: PSS	Ti ₃ C ₂ T _x	87.5 wt %	0.0011	42.1	19497.8	8
4	Ti ₂ CT _x /PVA	Ti ₂ CT _x	0.15 vol %	0.5	28	5136	9
5	3D rGO-MXene	rGO/	60.4 wt %/	0.32	32 /	~14299.2	10
	foam	Ti ₃ C ₂ T _x	39.6 wt %				
6	Ti ₃ C ₂ T _x /SA	Ti ₃ C ₂ T _x	90 wt %	0.0014	43.9	14830	11
7	Ti ₃ C ₂ T _x /CA	$Ti_3C_2T_x$	90 wt %	0.0026	54.3	17586	11
8	CNF5@MXene4	Ti ₃ C ₂ T _x	50 wt %	0.0035	39.6	7029	12
9	CSA-M0.6-T20mg	Ti ₃ C ₂ T _x	28.57 wt %	0.00384	50.01	11354.35	13
10	MWCNT/WPU foam	MWCNT	76.2 wt %	0.1	21.1	5410	14
11	MWCNT/WPU	MWCNT	61.5 wt %	0.005	20.45	3408	15
12	MWCNT/SWCNT	/	70 wt %/ 30 wt %	0.013	65	5910	16
13	P(St-BA)/S-GNS	Graphene	25 wt %	0.005	21.5	10652	17
14	Graphene/ PEDOT: PSS	Graphene	99 wt %	0.15	69.1	20827	18

Table S6. The comparison of the thickness specific shielding effectiveness of PU/MX nanocomposite films and other previous EMI shielding composites.

15	rGO/PI	rGO	16 wt %	0.08	21	937.5	19
16	Cotton-derived carbon network	/	/	0.03	46.9	26055	20
17	GF/CNT/PDMS	Graphene /CNT	2.7 wt %/ 2 wt %	0.16	75	5206	21
18	Graphene/PDMS	Graphene	0.8 wt %	0.1	30	5000	22
19	PU/MX-0	Ti ₃ C ₂ T _x	100 wt %	0.00074	61.4	20641.93	
20	PU/MX-10	Ti ₃ C ₂ T _x	90 wt %	0.00084	56.9	22610.65	
21	PU/MX-20	Ti ₃ C ₂ T _x	80 wt %	0.00055	49.4	33771.92	This
22	PU/MX-30	Ti ₃ C ₂ T _x	70 wt %	0.00079	47.4	24781.33	work
23	PU/MX-50	Ti ₃ C ₂ T _x	50 wt %	0.00062	37.9	28427.74	
24	PU/MX-70	Ti ₃ C ₂ T _x	30 wt %	0.00093	28.5	18756.17	

NT	Samula Nama	Tensile	Fracture Toughness	D.f
110.	Sample Name	Strength (MPa)	(MJ m ⁻³)	Kei.
1	Ti ₃ C ₂ T _x /CNF	44.2	1.2	7
2	Ti ₃ C ₂ T _x /PEDOT: PSS	13.71	~0.021	8
3	CNF5@MXene4	112.5	2.7	12
4	CSA-M0.6-T20mg	84.4	~7.7	13
5	MXene foam	~4	~0.0105	23
6	MXene-CNT	25	~0.0625	6
7	MWCNT/WPU	2.6	~0.175	15
8	CNT-NR	16.2	0.068	24
9	MWCNT/SWCNT	17.4	~0.243	16
10	MWCNT/PC	15	~0.0018	25
11	RGO/PVA	62.4	~1.8	26
12	MG/PVA	55.2	~2.4	26
12	rGO coated	1.22	0.05	27
15	Fe ₃ O ₄ @SiO ₂ @polypyrrole	1.22	~0.05	27
14	Ag-NW/PANI	44	~0.33	28
15	CF/PAM/wood fiber	39.52	~0.07	29
16	CNF-coated CF paper	13.4	~0.224	30
17	PU/MX-0	32.18	0.78	This
18	PU/MX-10	65.18	1.64	work

 Table S7. The comparison of mechanical properties of PU/MX nanocomposite films and other reported EMI shielding materials.

19	PU/MX-20	101.58	3.21	
20	PU/MX-30	66.94	1.69	This
21	PU/MX-50	32.15	0.78	work
22	PU/MX-70	22.05	1.32	

References

- S. T. Hsiao, C. C. M. Ma, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, R. B. Yang and W. F. Liang, ACS Appl. Mater. Interfaces, 2014, 6, 10667-10678.
- 2. X. Li, X. Yin, S. Liang, M. Li, L. Cheng and L. Zhang, Carbon, 2019, 146, 210-217.
- 3. Z. Li, Z. Wang, W. Lu and B. Hou, *Metals*, 2018, 8, 652.
- H. B. Zhang, Q. Yan, W. G. Zheng, Z. He and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2011, 3, 918-924.
- F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo and Y. Gogotsi, Science, 2016, 353, 1137-1140.
- G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor, *Adv. Funct. Mater.*, 2018, 28, 1803360.
- W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 44787-44795.
- H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang and L. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 10198-10207.
- X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng and L. Zhang, *Adv. Funct. Mater.*, 2018, 28, 1803938.
- 11. Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan and C. Lu, Adv. Mater. Interfaces 2019, 6, 1802040.
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng, B. Wang, D. Zhang, J. Ma and C. Liu, ACS Appl Mater Interfaces, 2020, 12, 4895-4905.
- Y. Zhang, W. Cheng, W. Tian, J. Lu, L. Song, K. M. Liew, B. Wang and Y. Hu, ACS Appl Mater Interfaces, 2020, 12, 6371-6382.

- 14. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, Adv. Funct. Mater., 2016, 26, 303-310.
- Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang and Z. Zhang, *Carbon*, 2016, 96, 768-777.
- S. Lu, J. Shao, K. Ma, D. Chen, X. Wang, L. Zhang, Q. Meng and J. Ma, *Carbon*, 2018, **136**, 387-394.
- L. Wei, W. Zhang, J. Ma, S. L. Bai, Y. Ren, C. Liu, D. Simion and J. Qin, *Carbon*, 2019, 149, 679-692.
- 18. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue and J. K. Kim, ACS Appl. Mater. Interfaces, 2017, 9, 9059-9069.
- 19. Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, RSC Advances, 2015, 5, 24342-24351.
- 20. X. Ma, Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai and W. Zheng, ACS Appl. Mater. Interfaces, 2018, 10, 38255-38263.
- 21. X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang and J. K. Kim, Composites Part A, 2016, 85, 199-206.
- 22. Z. Chen, C. Xu, C. Ma, W. Ren and H. M. Cheng, Adv. Mater., 2013, 25, 1296-1300.
- J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z. Z. Yu, *Adv. Mater.*, 2017, 29, 1702367.
- 24. L. C. Jia, M. Z. Li, D. X. Yan, C. H. Cui, H. Y. Wu and Z. M. Li, *J. Mater. Chem. C* 2017, 5, 8944-8951.
- 25. S. Pande, A. Chaudhary, D. Patel, B. P. Singh and R. B. Mathur, *RSC Advances*, 2014, **4**, 13839-13849.
- 26. B. Yuan, C. Bao, X. Qian, L. Song, Q. Tai, K. M. Liew and Y. Hu, Carbon, 2014, 75, 178-189.
- 27. Y. Yuan, W. Yin, M. Yang, F. Xu, X. Zhao, J. Li, Q. Peng, X. He, S. Du and Y. Li, *Carbon*, 2018, 130, 59-68.
- 28. F. Fang, Y. Q. Li, H. M. Xiao, N. Hu and S. Y. Fu, J. Mater. Chem. C, 2016, 4, 4193-4203.
- 29. B. Dang, Y. Chen, N. Yang, B. Chen and Q. Sun, Nanotechnology, 2018, 29, 195605.
- 30. S. Mondal, S. Ganguly, P. Das, P. Bhawal, T. K. Das, L. Nayak, D. Khastgir and N. C. Das, *Cellulose*, 2017, 24, 5117-5131.