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Experimental details

Synthesis of graphene oxide with pre-oxidization process (PGO). 

K2S2O8 (12.5 g) and P2O5 (12.5 g) were dissolved in concentrated H2SO4 (60 mL, 

98%) at 80oC. And then graphite powder (15 g, 325 mesh, dried at 60oC for 24 h) was 

added to the acidic solution, and the resulting mixture was stirred at 80oC for 4.5 h. 

After cooling to room temperature, the solution was diluted with 2.5 L deionized water. 

The pre-oxidized graphite was obtained by filtration and dried at 100 oC for 12 h. This 

pretreated graphite powders (12 g) was put into concentrated H2SO4 (276 mL, 98%) in 

an ice bath (under 4oC), and then NaNO3 (6 g) was added. After that, KMnO4 (36 g) 

was gradually added within 30 min with stirring and keeping under 4oC. The mixture 

was then heated to 35 oC and kept for 4 h. After, deionized water (552 ml) was added 

into the mixture and the temperature of reactants was heated to 98oC for 15 min. The 

reaction was terminated by adding 552 mL deionized water and 30 mL H2O2 (30%) to 

reduce Mn(VII) species. 

Synthesis of conventional graphene oxide (CGO). 

Graphite powder (12 g, 325 mesh, dried at 60°C for 24 h) was added to 

concentrated H2SO4 (276 mL) in an ice bath (under 4oC) with vigorous stirring, and 

followed by the slow addition of NaNO3 (6 g). After that, KMnO4 (36 g) was added 

over a period of 30 min and the oxidation was performed over 4 h under 35°C. The 

following oxidation process initiated by the addition of 552 mL H2O and kept at 98°C 

for 15 min. The reaction was terminated by the same method specified in the 

preparation of PGO. 

Synthesis of low temperature oxidized graphene oxide (LGO). 

Graphite powder (12 g, 325 mesh, dried at 60°C for 24 h) and NaNO3 (6 g) were 

added to concentrated H2SO4 (276 mL) in an ice bath with vigorous stirring. After that, 

KMnO4 (36 g) was added over a period of 30 min. The oxidation process was performed 

over 4 h at 20°C. After that, the reaction was terminated by pouring the reaction system 

into 1,000 mL 20°C deionized water and the slow addition of 30 mL 30% H2O2. 
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Exfoliation and purification of the GO samples. 

The final mixture was centrifuged and subjected to several cycles of suspension in 

10% HCl solution and separated by centrifugation until the pH value of the supernatant 

reached 7. The resulting solid was re-dispersed in deionized water and exfoliated by 

mild sonication at 20°C for 10 min, and subjected to dialysis to remove impurities for 

approximately 7 days. Then brown sticky GO dispersion was obtained. After that, the 

GO dispersion was diluted and subjected to another 3 cycles of centrifugation at 1000 

rpm 20 min for each to remove the graphite powder and unexfoliated graphite oxide 

agglomerates. Finally, the GO dilute dispersion was concentrated by centrifugation at 

10000 rpm for 1 h, generating the GO stock at solid content up to 1 wt.%.

Figure S1. Typical AFM images and height profiles of GO sheets: (a) PGO, (b) CGO 

and (c) LGO.
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Figure S2. Typical TEM images of (a) PGO, (b) CGO and (c) LGO sheets. 

Figure S3. Typical photographs of large-scale porous graphene film with a dimension 

of 100 mm × 100 mm and a thickness of 100 μm. 
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Figure S4. FTIR spectra of GO films.

Figure S5. The cyclic compressing performance of 200 μm-thick porous graphene 

films of (a) PPGF and (b) CPGF.
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Figure S6. The average EMI shielding effectiveness of the porous graphene films 

with different GO precursors and film thicknesses of 400 and 1000 μm.
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Table S1. Comparison of the shielding capacity of graphene-based materials.

Types Materials Matrix
Graphene contents

(wt.%)

Density

(g/cm3)

Thickness

(mm)

EMI SE

(dB)

SSE/t

(dB·cm2/g)
Ref.

Graphene PS 7 1.04 2.5 45.1 173 1

Graphene PEDOT : PSS 25 1.04 0.8 70 841 2

Graphene PEI 10 1.28 2.3 22 75 3

Graphene PMMA 8 1.19 3.4 30 74 4

Graphene PMMA 4.70 1.18 2.9 63.2 184.7 5

Graphene WPU 7.7 1.43 2 32 112 6

Graphene WPU 7.5 1.43 2 34 119 7

Graphene WPU 7.5 1.43 2 38 133 8

Graphene PS 10 1.04 2 29.7 142.8 9

Graphene PS 14.9 1.02 2 24.5 120 10

Graphene @ Fe3O4 PVA 35 0.75 0.3 15 66.7 11

Graphene PVA 15 0.75 0.3 10 43.3 11

G
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 m

at
er
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ls

Graphene UHMWPE 1.5 0.94 2.5 28.3 120 12

Graphene @ Fe3O4 / Bulk 0.77 0.3 24 1033 13

Graphene film / Bulk 1.09 0.018 55 28032 14

Graphene film / Bulk 0.67 0.05 60 18300 15

Graphene film / Bulk 1.85 0.08 77.2 5216 16

G
ra

ph
en

e 
fil

m
s

Graphene film / Bulk 2.10 0.0088 37 20021 17

Graphene PEI 10 0.29 2.3 12.8 191.3 3

Graphene PS 30 0.45 2.5 29.3 257.6 18

Graphene PS 10 1.04 2.8 18 62 19

Graphene PMMA 5 0.79 2.4 19 100 20

Graphene PI 16 0.28 0.8 21 937.5 21

Graphene @ Fe3O4 PEI 10 0.4 2.5 18.2 182 22

Graphene PU 10 0.03 20 19.9 332 23

Graphene aerogel film / Bulk 0.41 0.12 65 13211 24

Porous graphene film / Bulk 0.06 0.3 25.2 14000 25

Graphene aerogel PDMS 3.07 1.0 2 54.26 271.3 26

Graphene aerogel EPOXY 0.33 ~1.6 4 35 54.7 27

Graphene PDMS 0.8 0.06 1 20 3333 28

Graphene
Carbon 

texture
42 0.07 1 15 2140 29

Graphene PEDOT : PSS 17.85 0.076 1.5 91.9 8040 30

Graphene Melamine Bulk 0.019 12 27.3 119 31

Graphene PU 1 0.092 2.5 23 101 32

LPGF / Bulk 0.142 0.1 37.43 26302

LPGF / Bulk 0.075 0.2 43.82 29178 

CPGF / Bulk 0.076 0.2 28.89 19007 

G
ra

ph
en

e 
fo

am
s

PPGF / Bulk 0.078 0.2 22.00 14103 

This 

work
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