Supporting Information

Lead-free antiferroelectric borate crystal K3Nb3B2O12 with polar structure

Pai Shan, Junjie Xiong, Zujian Wang*, Chao He, Xiaoming Yang, Rongbing Su, Xifa Long*

Figure S1. Schematic illustrations of (a) single P-E hysteresis loop for FEs and (b) double P-E hysteresis loop for AFEs.

Figure S2. XRD patterns of KNBO powder, (001), (010) and (100) crystal plates.

Figure S3. (a) Double P-E hysteresis loops and (b) corresponding I-E curves of KNBO crystal measured at different electric fields, by 50 Hz, at room temperature.

Figure S4. Double P-E hysteresis loops of KNBO crystal measured with different frequencies, by 21 kV/cm, at room temperature.

Figure S5. Double *P*–*E* hysteresis loops of KNBO crystal measured at 374 K, by 50 Hz.

Figure S6. Orientation of the dipole moment vectors for NbO₆, KO₁₃ and BO₃ polyhedra in a unit cell of KNBO crystal, (a) in (010) plane and (b) along [010] direction. All O atoms are omitted for clarity. The numbers represent cations possessing different crystallographically independent sites.

Formula sum	K ₃ Nb ₃ B ₂ O ₁₂		
Formula weight (g/mol)	609.65		
Crystal color	colorless		
Crystal system	orthorhombic		
Space group	P2₁ma		
a/Å	17.5219(7)		
b/Å	15.1708(6)		
c/Å	3.96882(11)		
V⁄/ų	1055.00(7)		
Ζ	4		
Crystal size	$0.18 \times 0.13 \times 0.09 \text{ mm}^3$		
F(000)	1144		
Limiting indices	-4 ≤ h ≤ 4, -21 ≤ k ≤ 19, -18 ≤ l ≤ 18		
GOF(F ²)	1.096		
Final <i>R</i> indices $[F_o^2 > 2 \sigma (F_c^2).]^{a)}$	$R_1 = 0.0232,$ $wR_2 = 0.0557$		
Final R indices (all data) ^{a)}	$R_1 = 0.0316,$ $wR_2 = 0.0616$		

Table S1. Crystal data and structure refinement for KNBO crystal at room temperature.

^{a)} $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$ and $wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]]^{1/2}$ for $F_0^2 > 2\sigma(F_c^2)$

Cation of polar	Dipole Moment [Debye]			
polyneura	[100]-component	[010]-component	[001]-component	total magnitude
Nb(1 ^{a)} -1 ^{b)})O ₆	1.016	0.000	-1.218	1.586
Nb(1-2)O ₆	1.015	0.000	1.218	1.586
Nb(2-1)O ₆	-0.259	0.788	-1.337	1.574
Nb(2-2)O ₆	-0.259	-0.788	-1.337	1.574
Nb(2-3)O ₆	-0.254	0.786	1.337	1.571
Nb(2-4)O ₆	-0.254	-0.786	1.337	1.571
Nb(3-1)O ₆	0.740	0.000	-1.300	1.496
Nb(3-2)O ₆	0.730	0.000	1.299	1.490
Nb(4-1)O ₆	-0.362	-0.683	-1.305	1.516
Nb(4-2)O ₆	-0.362	0.683	-1.305	1.516
Nb(4-3)O ₆	-0.362	-0.677	1.307	1.516
Nb(4-4)O ₆	-0.362	0.677	1.307	1.516
K(1-1)O ₁₃	2.362	0.000	1.129	2.618
K(1-2)O ₁₃	2.362	0.000	-1.129	2.618
K(2-1)O ₁₃	-1.216	2.064	1.424	2.787
K(2-2)O ₁₃	-1.216	-2.064	1.424	2.787
K(2-3)O ₁₃	-1.216	2.063	-1.425	2.787
K(2-4)O ₁₃	-1.216	-2.063	-1.425	2.787
K(3-1)O ₁₃	2.397	0.000	0.675	2.491
K(3-2)O ₁₃	2.397	0.000	-0.675	2.491
K(4-1)O ₁₃	-1.164	-2.060	0.498	2.418
K(4-2)O ₁₃	-1.164	2.060	0.498	2.418
K(4-3)O ₁₃	-1.164	-2.061	-0.498	2.419
K(4-4)O ₁₃	-1.164	2.061	-0.498	2.419
B(1-1)O ₃	-0.072	-0.048	-0.151	0.174
B(1-2)O ₃	-0.072	0.048	-0.151	0.174
B(1-3)O ₃	-0.071	-0.048	0.151	0.174
B(1-4)O ₃	-0.071	0.048	0.151	0.174
B(2-1)O ₃	-0.085	0.025	0.054	0.104
B(2-2)O ₃	-0.085	-0.025	0.054	0.104
B(2-3)O ₃	-0.085	0.023	-0.054	0.104
B(2-4)O ₃	-0.085	-0.023	-0.054	0.104

Table S2. Calculation of dipole moments for NbO₆, KO₁₃ and BO₃ polyhedra within a unit cell of KNBO crystal.

a) The first number represents cations possessing different crystallographically independent sites, these numbers obtain identical implication with Figure 3; ^{b)} The second number represents serial number of cations occupying in the same crystallographically independent sites.