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1. Chemicals and instruments

All chemicals and reagents were used as received from commercial resources without further
purification. Tetrahydrofuran (THF), and 1,4-dioxane used in synthetic routes were purified
by PURE SOLV (Innovative Technology) purification system. "H NMR and '3C NMR spectra
were measured on a Bruker 400 and 600 spectrometers at room temperature. Mass spectra and
time of Flight MS-MALDI (MALDI-TOF) were performed on a Thermo ISQ mass
spectrometer using a direct exposure probe and Bruker Auto flex II/Compass 1.0, respectively.
UV-vis absorption spectra were recorded on a Perkin Elmer Lambda 750 spectrophotometer.
Photoluminescence (PL) spectra and phosphorescent spectra were performed on Hitachi F-
4600 fluorescence spectrophotometer. Differential scanning calorimetry (DSC) was performed
on a TA DSC 2010 unit at a heating rate of 10 °C/min under nitrogen. The glass transition
temperature (7g) was determined from the second heating scan. Thermogravimetric analysis
(TGA) was performed on TA SDT 2960 instrument at a heating rate of 10 °C/min under
nitrogen, the temperature at 5% weight loss was used as the decomposition temperature (7d).
The electrochemical measurement was made using a CHI600 voltammetric analyzer. A
conventional three-electrode configuration consisting of a platinum working electrode, a Pt-
wire counter electrode, and an Ag/AgCl reference electrode were used. The solvent in the
measurement was CH,Cl,, and the supporting electrolyte was 0.1 M [Bu4N]PF6. Ferrocene
was added as a calibrant after each set of measurements, and all potentials reported were quoted
with reference to the ferrocene-ferrocenium (Fc/Fc+) couple at a scan rate of 100 mV/s.
Theoretical calculations based on density functional theory (DFT) approach at the B3LYP/6-

31G (d) level were performed with the use of the Gaussian 09 program.



2. OLED fabrication and measurements

All the material except two novel synthesized hosts were acquired from commercial source
without further purification. OLEDs were all fabricated under a base vacuum of 4x10 Torr
and on ITO glass substrates (160 nm, 15 Q/sq). Before the evaporation, ITO glass substrates
were ultrasonically cleaned sequentially with deionized water, acetone, ethanol, and deionized
water, and dried in an oven at 110 °C for 6 h. After that, they were put in ultraviolet ozone for
15 mins. The charge injecting layers deposited rates were 0.2~0.4 A/s, the charge transporting
layers deposited rates were 2~3 A/s and Al’s is 6-8 A/s. Quartz crystals would monitor all
materials deposition rates and thicknesses.

The EL information such as current efficiency (CE), EL spectra, power efficiency (PE), CIE
coordinate, values of driving voltages, J-V curves and luminance were all recorded via
KEITHLEY 2400 source meter and programmable spectra scan photometer (PHOTO
RESEARCH, PR 655). All the measurements were conducted in ambient air at a room
temperature, and the external quantum efficiency was calculated assuming Lambertian

distribution of light emission.
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Fig. S1 The TGA and DSC (inset figure) plots of (a) QAF-TRZ and (b) STF-TRZ.
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Fig. S2 Photophysical properties of QAF-TRZ and STF-TRZ in neat film.



Current (A)

Potential (V)

'~ QAF-TRZ o
s STF-TRZ
<
k]
(]
5
(&)
0.8 1.2 1.6 0.0 0.4 0.8 1.2 16

Potential (V)

Fig. S3 Cyclic Voltammetry curves of QAF-TRZ and STF-TRZ in DCM solution at

room temperature.
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Fig. S4 Chemical structures of commercial materials applied in the PHOLEDs
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Fig. S5 (a) J-V-L characteristics of blue devices, (b) J-V-L characteristics of green devices, (¢)

J-V—L characteristics of red devices and (d) EL spectra of RGB three-color devices.
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Fig. S6 'H NMR and 3C NMR spectra of compound-3 in deuterated CDCls;.
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Fig. S7 'H NMR and 3C NMR spectra of compound-3' in deuterated CDCls.
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Fig. S8 '"H NMR and '*C NMR spectra of compound-4 in deuterated CDCl;.
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Fig. S9 '"H NMR and '3C NMR spectra of compound-4' in deuterated CDCl;.
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Fig. S10 'H NMR and 3C NMR spectra of QAF-TRZ in deuterated CDCls.
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Fig. S11 '"H NMR and '3C NMR spectra of STF-TRZ in deuterated CDCl;.
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Fig. S12 MALDI TOF spectrum of QAF-TRZ.
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Fig. S13 MALDI TOF spectrum of STF-TRZ.




Table S1. Electroluminescence characteristics of the blue devices with different concentrations

Device Ratio V2 CEP PEP EQE¢ CIE¢
(%) (V) (cd/A)  (Im/W) (%) (%)
B1 10 3.5 40.5 37.3 17.7/16.3/13.5 (0.16,0.35)

12 35 420 387 18.2/16.7/14.0  (0.16,0.35)
15 34 450  47.8 19.4/18.3/17.2  (0.16,0.35)
20 34 425 395 18.2/17.2/147  (0.16,0.35)
‘B2 10 37 23.8 18.4 10.3/10.1/7.8  (0.16,0.34)
12 37 276 194 122/11.6/84  (0.16,0.35)
15 35 308 275 12.712.3/11.3  (0.17,0.37)
20 3.5 294 209 12.6/12.1/8.6  (0.17,0.37)

aDriving voltage at 100 cd/m?; ®Maximum data of current efficiency and power efficiency; °EQEs of
maximum data, 100 cd/m? and 1000 cd/m?2; ¢CIE (Commission International de 1'Eclairge); Measured

at a driving current density at 5 mA/cm?

Table S2. Electroluminescence characteristics of the blue devices with different hosts

Device \& CE PE® EQE*¢ CIE1
V) (cd/A) (Im/W) (%) (x,y)
B1 34 45.0 47.8 19.4/18.3/17.2  (0.16,0.35)
B2 3.5 30.8 27.5 12.7/12.3/11.3  (0.17,0.37)
mCP 3.9 40.5 33.6 18.0/16.4/13.4  (0.16,0.33)
26DCzppy 3.3 34.0 35.5 15.1/14.0/9.9  (0.16,0.34)

aDriving voltage at 100 c¢d/m?; "Maximum data of current efficiency and power efficiency; “EQEs of maximum
data, 100 cd/m? and 1000 cd/m?; 4CIE (Commission International de 1'Eclairge); Measured at a driving current

density at 5 mA/cm?




