Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting information

Copper oxide hierarchical morphology derived from MOF

precursors for enhancing ethanol vapor sensing performance

Sha Wang, ^a Zhimin Gao ^a, Guoshuai Song, ^a Yantao Yu, ^a Wenxiu He, ^a Linlin Li, ^a Tieqiang Wang, ^a Fuqiang Fan,^a Yunong Li, ^a Liying Zhang,^a Xuemin Zhang,^{*a} Yu Fu^{*a} and Wei Qi ^{*b}

^a Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China. *E-mail: fuyu@mail.neu.edu.cn (Y. Fu), zhangxuemin@mail.neu.edu.cn (X. M. Zhang)

^b Shenyang National Laboratory for Materials Science, Institute of Metal Research,
 Chinese Academy of Sciences, Shenyang 110016, P. R. China.*E-mail: wqi@imr.ac.cn
 (W. Qi)

Figure S1 SEM images of (a) Rod-like CuBDC precursors calcined at 450 °C for optimum calcination time of 100 min. (b) Rod-like CuBDC precursors calcined at optimum calcination temperature of 350 °C for 250 min. (c) Cube-like Cu(BDC)(DMF) precursors calcined at 450 °C for optimum calcination time of 100 min. (d) Cube-like Cu(BDC)(DMF) precursors calcined at optimum calcination temperature of 350 °C for 250 min.

Figure S2 (a) TEM image of rod-like CuO with 30.0 nm particle sizes. (b) Particle size distributions of rod-like CuO in TEM (a) image. (c) TEM image of cube-like CuO with 121.3 nm particle sizes. (d) Particle size distributions of cube-like CuO in TEM (c) image.

Figure S3 (a) N_2 adsorption-desorption isotherm at 77 K of rod-like CuO. The inset shows pore-size distribution of rod-like CuO (b) N_2 adsorption-desorption isotherm at 77 K of cube-like CuO. The inset shows pore-size distribution of cube-like CuO.

Scheme S1. Schematic drawings of gas sensing measurement system of rod-like and cube-like CuO.

Figure S4 Different gas response for the as-prepared rod-like and cube-like CuO sensor to 200 ppm ethanol at different operating temperatures.

Structure/	C ₂ H ₅ OH	Gas	Operating	Year of	Ref.
morphology	conc. (ppm)	response	Temperature	publication	
		(R_g/R_a)	(°C)		
nanoparticles	100	2.39	200	2012	[9]
Nanoleaves	1500	8.22	260	2015	[10]
Nanorod (film)	100	~5	210	2011	[11]
Wormlike CuO (film)	100	~4.7	220	2012	[30]
nanoribbons	100	~2.2	200	2008	[31]
nanoplates (film)	100	4.11	200	2012	[32]
Nanowires	1000	1.5	240	2009	[33]
Nanoplates	500	~7	150	2014	[34]
Nanocubes	300	1.51	300	2014	[35]
rod-like CuO	100	12.1	275	This work	
	200	19.9	275		
	300	24.1	275		
	400	28.9	275		
	500	37.4	275		
cube-like CuO	100	8.7	275	This work	
	200	12.5	275		
	300	15.2	275		
	400	19.4	275		
	500	22.9	275		

Table S1 Summary of ethanol gas sensors based on different copper oxide morphologies.

Materials	C₂H₅OH	Gas	Operating	Year	of	Ref.
	conc. (ppm)	response	temperature	publicatio	า	
		(R_g/R_a)				
ZnO nanowires	100	5.07	240	2008		[36]
V_2O_5/SnO_2	1000	14	25	2015		[37]
Nanowires						
In_2O_3 nanowires	100	~2	370	2004		[38]
Co ₃ O ₄	500	18.8	210	2018		[39]
Fe ₂ O ₃	200	~6	300	2016		[40]
NiO/SnO ₂ thin film	100	7.9	250	2017		[41]
NiO /MWCNTs	100	2	180	2015		[42]
CuO@ZnO	100	~5.5	240	2016		[43]
microcubes						
rod-like CuO	100	12.1	275	This work		
	200	19.9	275			
	300	24.1	275			
	400	28.9	275			
	500	37.4	275			
cube-like CuO	100	8.7	275	This work		
	200	12.5	275			
	300	15.2	275			
	400	19.4	275			
	500	22.9	275			

Table S2 Summary of ethanol gas sensors based on different materials.

Figure S5 The high-resolution XPS spectra of (a) Cu 2p of rod-like CuO. (b) O 1s of rod-like CuO. (c) Cu 2p of cube-like CuO. (d) O 1s of cube-like CuO.

Equation S1:

$$log(S_g-1)=b \cdot log(C_g)+log(a)$$
 (1)
Where

a, b, S_g and C_g are the prefactor, absorbed oxygen species charge parameter, the response and tested gas concentration, respectively. The b value is 0.5 or 1, which indicates that the absorbed surface oxygen species on the surface of sensing materials is O^{2-} or O^- , respectively.

Equation S2:

$$S_{g} = \frac{R_{gas}}{R_{air}}$$

$$= \frac{\frac{L_{D}}{D_{C}} \exp(-\frac{qV_{air}}{2kT}) \exp(-\frac{\Delta\phi}{2kT}) + \frac{1}{1 + \frac{L_{D}}{D_{G}} \exp(-\frac{qV_{air}}{2kT}) \exp(-\frac{\Delta\phi}{2kT})}}{\frac{L_{D}}{D_{C}} \exp(-\frac{qV_{air}}{2kT}) + \frac{1}{1 + \frac{L_{D}}{D_{G}} \exp(-\frac{qV_{air}}{2kT})}}$$

In which, qV_{air} is the surface potential barrier in air reference, $\Delta \Phi$ is the difference in the surface potential barrier when exposed to the tested gas versus the value in air, T is absolute temperature, k is the Boltzmann constant, Debye-layer length (L_D) is active sensing length, D_c is effective contact area and D_G is grain diameter.

Table	S3	Response	and	recovery	time	of	rod-like	and	cube-like	CuO	hierarchical
morpł	nolo	gy sensor t	to dif	ferent eth	anol o	con	centratic	ons.			

CuO	Gas concentration	Response	Recovery	Response
morphology	(ppm)	time (s)	time (s)	
rod-like CuO	100	102	40	12.1
	200	89	35	19.9
	300	84	34	24.1
	400	89	37	28.9
cube-like CuO	100	152	59	8.7
	200	154	51	12.5
	300	103	47	15.2
	400	121	45	19.4

Figure S6 Gas response of rod-like CuO to 200 ppm ethanol after 10 runs at 275 °C and 43 % RH.